--- title: "sp Gallery" output: html_document: toc: true toc_float: collapsed: false smooth_scroll: false toc_depth: 2 vignette: > %\VignetteIndexEntry{sp map gallery} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Plotting maps with `sp` This document shows example images created with objects represented by one of the classes for spatial data in packages sp. ## Loading data and packages The Meuse data set is loaded using a demo script in package `sp`, ```{r} library(sp) demo(meuse, ask = FALSE, echo = FALSE) # loads the meuse data sets class(meuse) ``` The North Carolina SIDS (sudden infant death syndrome) data set is available from package `sf`, and is loaded by ```{r} library(sf) nc <- as(st_read(system.file("gpkg/nc.gpkg", package="sf")), "Spatial") ``` ## Using base plot The basic `plot` command on a `Spatial` object gives just the geometry, without axes: ```{r} plot(meuse) ``` axes can be added when `axes=TRUE` is given; plot elements can be added incrementally: ```{r} plot(meuse, pch = 1, cex = sqrt(meuse$zinc)/12, axes = TRUE) v = c(100,200,400,800,1600) legend("topleft", legend = v, pch = 1, pt.cex = sqrt(v)/12) plot(meuse.riv, add = TRUE, col = grey(.9, alpha = .5)) ``` For local projection systems, such as in this case ```{r} proj4string(meuse) ``` the aspect ratio is set to 1, to make sure that one unit north equals one unit east. Even if the data are in long/lat degrees, an aspect ratio is chosen such that in the middle of the plot one unit north approximates one unit east. For small regions, this works pretty well; also note the degree symbols in the axes tic marks: ```{r, fig.height=8} crs.longlat = CRS("+init=epsg:4326") meuse.longlat = spTransform(meuse, crs.longlat) plot(meuse.longlat, axes = TRUE) ``` which looks different from the plot where one degree north (latitude) equals one degree east (longitude): ```{r} par(mar = rep(0,4)) plot(meuse.longlat, asp = 1) ``` ## Graticules Instead of axes with ticks and tick marks, maps often have graticules, a grid with constant longitude and latitude lines. `sp` provides several helper functions to add graticules, either in the local reference system, or in long/lat. Here is an example of the local reference system: ```{r, fig.height=7.5} par(mar = c(0, 0, 1, 0)) library(methods) # as plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0)) plot(gridlines(meuse), add = TRUE, col = grey(.8)) plot(meuse, add = TRUE) text(labels(gridlines(meuse)), col = grey(.7)) title("default gridlines with Meuse projected data") ``` ```{r} par(mar = c(0, 0, 1, 0)) grd <- gridlines(meuse.longlat) grd_x <- spTransform(grd, CRS(proj4string(meuse))) plot(as(meuse, "Spatial"), expandBB = c(.05, 0, 0, 0)) plot(grd_x, add=TRUE, col = grey(.8)) plot(meuse, add = TRUE) text(labels(grd_x, crs.longlat), col = grey(.7)) title("longitude latitude gridlines and labels") ``` These lines look pretty straight, because it concerns a small area. For ```{r} # demonstrate axis labels with angle, both sides: maps2sp = function(xlim, ylim, l.out = 100, clip = TRUE) { stopifnot(require(maps)) m = map(xlim = xlim, ylim = ylim, plot = FALSE, fill = TRUE) as(st_as_sf(m), "Spatial") } par(mar = c(0, 0, 1, 0)) m = maps2sp(c(-100,-20), c(10,55)) sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), CRS("+init=epsg:4326")) laea = CRS("+proj=laea +lat_0=30 +lon_0=-40") m.laea = spTransform(m, laea) sp.laea = spTransform(sp, laea) plot(as(m.laea, "Spatial"), expandBB = c(.1, 0.05, .1, .1)) plot(m.laea, col = grey(.8), add = TRUE) gl = gridlines(sp, easts = c(-100,-80,-60,-40,-20), norths = c(20,30,40,50)) gl.laea = spTransform(gl, laea) plot(gl.laea, add = TRUE) text(labels(gl.laea, crs.longlat)) text(labels(gl.laea, crs.longlat, side = 3:4), col = 'red') title("curved text label demo") # polar: par(mar = c(0, 0, 1, 0)) pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), CRS("+init=epsg:4326")) gl = gridlines(pts, easts = seq(-180,180,20), ndiscr = 100) polar = CRS("+init=epsg:3031") plot(spTransform(pts, polar), expandBB = c(.05, 0, .05, 0)) gl.polar = spTransform(gl, polar) lines(gl.polar) l = labels(gl.polar, crs.longlat, side = 3) l$pos = NULL # pos is too simple, use adj: text(l, adj = c(0.5, -0.5), cex = .8) l = labels(gl.polar, crs.longlat, side = 4) l$srt = 0 # otherwise they end up upside-down text(l, cex = .8) title("grid line labels on polar projection, epsg 3031") par(mar = c(0, 0, 1, 0)) m = maps2sp(xlim = c(-180,180), ylim = c(-90,-70), clip = FALSE) gl = gridlines(m, easts = seq(-180,180,20)) polar = CRS("+init=epsg:3031") gl.polar = spTransform(gl, polar) plot(as(gl.polar, "Spatial"), expandBB = c(.05, 0, .05, 0)) plot(gl.polar, add = TRUE) plot(spTransform(m, polar), add = TRUE, col = grey(0.8, 0.8)) l = labels(gl.polar, crs.longlat, side = 3) # pos is too simple here, use adj: l$pos = NULL text(l, adj = c(0.5, -0.3), cex = .8) l = labels(gl.polar, crs.longlat, side = 2) l$srt = 0 # otherwise they are upside-down text(l, cex = .8) title("grid line labels on polar projection, epsg 3031") ``` ## Other spatial objects in base plot The following plot shows polygons with county name as labels at their center point: ```{r} par(mar = c(0, 0, 1, 0)) plot(nc) invisible(text(coordinates(nc), labels=as.character(nc$NAME), cex=0.4)) ``` This plot of a `SpatialPolygonsDataFrame` uses grey shades: ```{r} names(nc) rrt <- nc$SID74/nc$BIR74 brks <- quantile(rrt, seq(0,1,1/7)) cols <- grey((length(brks):2)/length(brks)) dens <- (2:length(brks))*3 par(mar = c(0, 0, 1, 0)) plot(nc, col=cols[findInterval(rrt, brks, all.inside=TRUE)]) ``` The following plot shows a `SpatialPolygonsDataFrame`, using line densities ```{r} rrt <- nc$SID74/nc$BIR74 brks <- quantile(rrt, seq(0,1,1/7)) cols <- grey((length(brks):2)/length(brks)) dens <- (2:length(brks))*3 par(mar = rep(0,4)) plot(nc, density=dens[findInterval(rrt, brks, all.inside=TRUE)]) ``` Plot/image of a grid file, using base plot methods: ```{r} image(meuse.grid) ``` ```{r} plot(meuse.grid["dist"]) points(meuse, col = 'green') ``` ```{r} plot(meuse.grid["dist"], zlim = c(0,1)) plot(geometry(meuse.grid), add = TRUE, col = grey(.8)) ``` Read [this](http://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html) blog post to find out more about the options available (and limitations) for plotting gridded data with base plot methods in sp. ## using lattice plot (spplot) The following plot colours points with a legend in the plotting area and adds scales: ```{r} spplot(meuse, "zinc", do.log = TRUE, key.space=list(x = 0.1, y = 0.95, corner = c(0, 1)), scales=list(draw = TRUE)) ``` The following plot has coloured points plot with legend in plotting area and scales; it has a non-default number of cuts with user-supplied legend entries: ```{r} spplot(meuse, "zinc", do.log = TRUE, key.space=list(x=0.2,y=0.9,corner=c(0,1)), scales=list(draw = TRUE), cuts = 3, legendEntries = c("low", "intermediate", "high")) ``` The following plot adds a scale bar and north arrow: ```{r} scale = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(178600,332490), scale = 500, fill=c("transparent","black")) text1 = list("sp.text", c(178600,332590), "0") text2 = list("sp.text", c(179100,332590), "500 m") arrow = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(178750,332000), scale = 400) spplot(meuse, "zinc", do.log=T, key.space=list(x=0.1,y=0.93,corner=c(0,1)), sp.layout=list(scale,text1,text2,arrow), main = "Zinc (top soil)") ``` The following plot has north arrow and text outside panels ```{r} rv = list("sp.polygons", meuse.riv, fill = "lightblue") scale = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 1) text1 = list("sp.text", c(180500,329900), "0", which = 1) text2 = list("sp.text", c(181000,329900), "500 m", which = 1) arrow = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(178750,332500), scale = 400) spplot(meuse["zinc"], do.log = TRUE, key.space = "bottom", sp.layout = list(rv, scale, text1, text2), main = "Zinc (top soil)", legend = list(right = list(fun = mapLegendGrob(layout.north.arrow())))) ``` The same plot; north arrow now inside panel, with custom panel function instead of sp.layout ```{r} spplot(meuse, "zinc", panel = function(x, y, ...) { sp.polygons(meuse.riv, fill = "lightblue") SpatialPolygonsRescale(layout.scale.bar(), offset = c(179900,329600), scale = 500, fill=c("transparent","black")) sp.text(c(179900,329700), "0") sp.text(c(180400,329700), "500 m") SpatialPolygonsRescale(layout.north.arrow(), offset = c(178750,332500), scale = 400) panel.pointsplot(x, y, ...) }, do.log = TRUE, cuts = 7, key.space = list(x = 0.1, y = 0.93, corner = c(0,1)), main = "Top soil zinc concentration (ppm)") ``` A multi-panel plot, scales + north arrow only in last plot: using the `which` argument in a layout component (if `which=4` was set as list component of sp.layout, the river would as well be drawn only in that (last) panel) ```{r} rv = list("sp.polygons", meuse.riv, fill = "lightblue") scale = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4) text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4) text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4) arrow = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(181300,329800), scale = 400, which = 4) cuts = c(.2,.5,1,2,5,10,20,50,100,200,500,1000,2000) spplot(meuse, c("cadmium", "copper", "lead", "zinc"), do.log = TRUE, key.space = "right", as.table = TRUE, sp.layout=list(rv, scale, text1, text2, arrow), # note that rv is up front! main = "Heavy metals (top soil), ppm", cex = .7, cuts = cuts) ``` Comparing four kriging varieties in a multi-panel plot with shared scale: ```{r} rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1) pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .5) text1 = list("sp.text", c(180500,329900), "0", cex = .5, which = 4) text2 = list("sp.text", c(181000,329900), "500 m", cex = .5, which = 4) scale = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(180500,329800), scale = 500, fill=c("transparent","black"), which = 4) library(gstat) v.ok = variogram(log(zinc)~1, meuse) ok.model = fit.variogram(v.ok, vgm(1, "Exp", 500, 1)) # plot(v.ok, ok.model, main = "ordinary kriging") v.uk = variogram(log(zinc)~sqrt(dist), meuse) uk.model = fit.variogram(v.uk, vgm(1, "Exp", 300, 1)) # plot(v.uk, uk.model, main = "universal kriging") meuse[["ff"]] = factor(meuse[["ffreq"]]) meuse.grid[["ff"]] = factor(meuse.grid[["ffreq"]]) v.sk = variogram(log(zinc)~ff, meuse) sk.model = fit.variogram(v.sk, vgm(1, "Exp", 300, 1)) # plot(v.sk, sk.model, main = "stratified kriging") zn.ok = krige(log(zinc)~1, meuse, meuse.grid, model = ok.model, debug.level = 0) zn.uk = krige(log(zinc)~sqrt(dist), meuse, meuse.grid, model = uk.model, debug.level = 0) zn.sk = krige(log(zinc)~ff, meuse, meuse.grid, model = sk.model, debug.level = 0) zn.id = krige(log(zinc)~1, meuse, meuse.grid, debug.level = 0) zn = zn.ok zn[["a"]] = zn.ok[["var1.pred"]] zn[["b"]] = zn.uk[["var1.pred"]] zn[["c"]] = zn.sk[["var1.pred"]] zn[["d"]] = zn.id[["var1.pred"]] spplot(zn, c("a", "b", "c", "d"), names.attr = c("ordinary kriging", "universal kriging with dist to river", "stratified kriging with flood freq", "inverse distance"), as.table = TRUE, main = "log-zinc interpolation", sp.layout = list(rv, scale, text1, text2) ) ``` Reuse these results; universal kriging standard errors; grid plot with point locations and polygon (river): ```{r} rv = list("sp.polygons", meuse.riv, fill = "blue", alpha = 0.1) pts = list("sp.points", meuse, pch = 3, col = "grey", alpha = .7) spplot(zn.uk, "var1.pred", sp.layout = list(rv, scale, text1, text2, pts), main = "log(zinc); universal kriging using sqrt(dist to Meuse)") zn.uk[["se"]] = sqrt(zn.uk[["var1.var"]]) spplot(zn.uk, "se", sp.layout = list(rv, pts), main = "log(zinc); universal kriging standard errors") ``` ```{r} arrow = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(-76,34), scale = 0.5, which = 2) spplot(nc, c("SID74", "SID79"), names.attr = c("1974","1979"), colorkey=list(space="bottom"), scales = list(draw = TRUE), main = "SIDS (sudden infant death syndrome) in North Carolina", sp.layout = list(arrow), as.table = TRUE) ``` ```{r} arrow = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(-76,34), scale = 0.5, which = 2) #scale = list("SpatialPolygonsRescale", layout.scale.bar(), # offset = c(-77.5,34), scale = 1, fill=c("transparent","black"), which = 2) #text1 = list("sp.text", c(-77.5,34.15), "0", which = 2) #text2 = list("sp.text", c(-76.5,34.15), "1 degree", which = 2) # create a fake lines data set: ## multi-panel plot with coloured lines: North Carolina SIDS spplot(nc, c("SID74","SID79"), names.attr = c("1974","1979"), colorkey=list(space="bottom"), main = "SIDS (sudden infant death syndrome) in North Carolina", sp.layout = arrow, as.table = TRUE) ``` Bubble plots for cadmium and zinc: ```{r} b1 = bubble(meuse, "cadmium", maxsize = 1.5, main = "cadmium concentrations (ppm)", key.entries = 2^(-1:4)) b2 = bubble(meuse, "zinc", maxsize = 1.5, main = "zinc concentrations (ppm)", key.entries = 100 * 2^(0:4)) print(b1, split = c(1,1,2,1), more = TRUE) print(b2, split = c(2,1,2,1), more = FALSE) ``` Factor variables using `spplot`: ```{r} # create two dummy factor variables, with equal labels: set.seed(31) nc$f = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5]) nc$g = factor(sample(1:5, 100,replace = TRUE),labels=letters[1:5]) library(RColorBrewer) ## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axes spplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE)) ``` ## maps using ggplot2 (it is recommended to migrate to `sf`, and use `geom_sf()` for this) ## Interactive maps: leaflet, mapview R packages leaflet and mapview provide interactive, browser-based maps building upon the leaflet javascript library. Example with points, grid and polygons follow: ```{r, results="markup"} library(mapview) mapview(meuse, zcol = c("zinc", "lead"), legend = TRUE) ``` ```{r, results="markup"} mapview(meuse.grid, zcol = c("soil", "dist"), legend = TRUE) ``` ```{r, results="markup"} mapview(nc, zcol = c("SID74", "SID79"), alpha.regions = 1.0, legend = TRUE) ``` Mapview also allows grids of view that are synced ```{r, results="markup",eval=FALSE} m1 <- mapview(meuse, zcol = "soil", burst = TRUE, legend = TRUE) m2 <- mapview(meuse, zcol = "lead", legend = TRUE) m3 <- mapview(meuse, zcol = "landuse", map.types = "Esri.WorldImagery", legend = TRUE) m4 <- mapview(meuse, zcol = "dist.m", legend = TRUE) sync(m1, m2, m3, m4) # 4 panels synchronised # latticeView(m1, m2, m3, m4) # 4 panels ``` more examples are found [here](https://environmentalinformatics-marburg.github.io/web-presentations/20150723_mapView.html). ## SessionInfo ```{r} sessionInfo() ```