Title: | Classes and Methods for Spatial Data |
---|---|
Description: | Classes and methods for spatial data; the classes document where the spatial location information resides, for 2D or 3D data. Utility functions are provided, e.g. for plotting data as maps, spatial selection, as well as methods for retrieving coordinates, for subsetting, print, summary, etc. From this version, 'rgdal', 'maptools', and 'rgeos' are no longer used at all, see <https://r-spatial.org/r/2023/05/15/evolution4.html> for details. |
Authors: | Edzer Pebesma [aut, cre], Roger Bivand [aut], Barry Rowlingson [ctb], Virgilio Gomez-Rubio [ctb], Robert Hijmans [ctb], Michael Sumner [ctb], Don MacQueen [ctb], Jim Lemon [ctb], Finn Lindgren [ctb], Josh O'Brien [ctb], Joseph O'Rourke [ctb], Patrick Hausmann [ctb] |
Maintainer: | Edzer Pebesma <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.1-4 |
Built: | 2024-12-23 05:01:43 UTC |
Source: | https://github.com/edzer/sp |
constructs SpatialXxxDataFrame from geometry and attributes
addAttrToGeom(x, y, match.ID, ...)
addAttrToGeom(x, y, match.ID, ...)
x |
geometry (locations) of the queries |
y |
data.frame object with attributes |
match.ID |
logical; if TRUE, the IDs of the geometry and of the data.frame are matched (possibly swapping records), and an error occurs when some IDs do not match |
... |
(optional) arguments passed to the constructor functions |
an object of class XxxDataFrame, where Xxx is the class of x
Edzer Pebesma, [email protected]
spatial aggregation of thematic information in spatial objects
## S3 method for class 'Spatial' aggregate(x, by = list(ID = rep(1, length(x))), FUN, ..., dissolve = TRUE, areaWeighted = FALSE)
## S3 method for class 'Spatial' aggregate(x, by = list(ID = rep(1, length(x))), FUN, ..., dissolve = TRUE, areaWeighted = FALSE)
x |
object deriving from Spatial, with attributes |
by |
aggregation predicate; if |
FUN |
aggregation function, e.g. mean; see details |
... |
arguments passed on to function |
dissolve |
logical; should, when aggregating based on attributes, the
resulting geometries be dissolved? Note that if |
areaWeighted |
logical; should the aggregation of |
For as far as these functions use package rgeos, (lines, polygons, dissolve = TRUE), they are deprecated as rgeos will retire; try using sf::aggregate instead.
FUN
should be a function that takes as first argument a
vector, and that returns a single number. The canonical examples
are mean and sum. Counting features is obtained when
summing an attribute variable that has the value 1 everywhere.
The aggregation of attribute values of x
either over the
geometry of by
by using over for spatial matching,
or by attribute values, using aggregation function FUN
.
If areaWeighted
is TRUE
, FUN
is ignored and the
area weighted mean is computed for numerical variables, or if all
attributes are factor
s, the area dominant factor level (area
mode) is returned. This computes the intersection of x
and by
; see examples below. As this uses code from package
rgeos, it is deprecated as package rgeos will retire.
If by
is missing, aggregates over all features.
uses over to find spatial match if by
is a
Spatial object
Edzer Pebesma, [email protected]
data("meuse") coordinates(meuse) <- ~x+y data("meuse.grid") coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE i = cut(meuse.grid$dist, c(0,.25,.5,.75,1), include.lowest = TRUE) j = sample(1:2, 3103,replace=TRUE) x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean, dissolve = FALSE) spplot(x["j"], col.regions=bpy.colors())
data("meuse") coordinates(meuse) <- ~x+y data("meuse.grid") coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE i = cut(meuse.grid$dist, c(0,.25,.5,.75,1), include.lowest = TRUE) j = sample(1:2, 3103,replace=TRUE) x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean, dissolve = FALSE) spplot(x["j"], col.regions=bpy.colors())
Converts grids of regular rectangles into a SpatialPolygons
object, which can be transformed to a different projection or datum with spTransform
in package rgdal
. The function is not suitable for high-resolution grids. The ordering of the grid cells is as in coordinates()
of the same object, and is reported by IDvaluesGridTopology
.
as.SpatialPolygons.GridTopology(grd, proj4string = CRS(as.character(NA))) IDvaluesGridTopology(obj) as.SpatialPolygons.SpatialPixels(obj) IDvaluesSpatialPixels(obj) HexPoints2SpatialPolygons(hex, dx)
as.SpatialPolygons.GridTopology(grd, proj4string = CRS(as.character(NA))) IDvaluesGridTopology(obj) as.SpatialPolygons.SpatialPixels(obj) IDvaluesSpatialPixels(obj) HexPoints2SpatialPolygons(hex, dx)
grd |
|
proj4string |
object of class CRS-class |
obj |
|
hex |
|
dx |
spacing of two horizontally adjacent points; if missing, this will be computed from the points |
as.SpatialPolygons.GridTopology
and as.SpatialPolygons.SpatialPixels
return a SpatialPolygons
object;
IDvaluesGridTopology
and IDvaluesSpatialPixels
return a character vector with the object grid indices.
GridTopology
, SpatialPixels
, SpatialPolygons
spTransform
in package rgdal
library(lattice) grd <- GridTopology(cellcentre.offset=c(-175,55), cellsize=c(10,10), cells.dim=c(4,4)) SpP_grd <- as.SpatialPolygons.GridTopology(grd) plot(SpP_grd) text(coordinates(SpP_grd), sapply(slot(SpP_grd, "polygons"), function(i) slot(i, "ID")), cex=0.5) trdata <- data.frame(A=rep(c(1,2,3,4), 4), B=rep(c(1,2,3,4), each=4), row.names=sapply(slot(SpP_grd, "polygons"), function(i) slot(i, "ID"))) SpPDF <- SpatialPolygonsDataFrame(SpP_grd, trdata) spplot(SpPDF) data(meuse.grid) gridded(meuse.grid)=~x+y xx = spsample(meuse.grid, type="hexagonal", cellsize=200) xxpl = HexPoints2SpatialPolygons(xx) image(meuse.grid["dist"]) plot(xxpl, add = TRUE) points(xx, cex = .5) ## Not run: spplot(aggregate(as(meuse.grid[,1:3], "SpatialPolygonsDataFrame"), xxpl, areaWeighted=TRUE), main = "aggregated meuse.grid") ## End(Not run)
library(lattice) grd <- GridTopology(cellcentre.offset=c(-175,55), cellsize=c(10,10), cells.dim=c(4,4)) SpP_grd <- as.SpatialPolygons.GridTopology(grd) plot(SpP_grd) text(coordinates(SpP_grd), sapply(slot(SpP_grd, "polygons"), function(i) slot(i, "ID")), cex=0.5) trdata <- data.frame(A=rep(c(1,2,3,4), 4), B=rep(c(1,2,3,4), each=4), row.names=sapply(slot(SpP_grd, "polygons"), function(i) slot(i, "ID"))) SpPDF <- SpatialPolygonsDataFrame(SpP_grd, trdata) spplot(SpPDF) data(meuse.grid) gridded(meuse.grid)=~x+y xx = spsample(meuse.grid, type="hexagonal", cellsize=200) xxpl = HexPoints2SpatialPolygons(xx) image(meuse.grid["dist"]) plot(xxpl, add = TRUE) points(xx, cex = .5) ## Not run: spplot(aggregate(as(meuse.grid[,1:3], "SpatialPolygonsDataFrame"), xxpl, areaWeighted=TRUE), main = "aggregated meuse.grid") ## End(Not run)
This function is used in making SpatialPolygons objects from other formats.
as.SpatialPolygons.PolygonsList(Srl, proj4string=CRS(as.character(NA)))
as.SpatialPolygons.PolygonsList(Srl, proj4string=CRS(as.character(NA)))
Srl |
A list of Polygons objects |
proj4string |
Object of class |
The functions return a SpatialPolygons object
Roger Bivand
grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as.SpatialPolygons.GridTopology(grd) plot(polys) text(coordinates(polys), labels=sapply(slot(polys, "polygons"), function(i) slot(i, "ID")), cex=0.6)
grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as.SpatialPolygons.GridTopology(grd) plot(polys) text(coordinates(polys), labels=sapply(slot(polys, "polygons"), function(i) slot(i, "ID")), cex=0.6)
retrieves spatial bounding box from spatial data
bbox(obj)
bbox(obj)
obj |
object deriving from class "Spatial", or one of classes: "Line", "Lines", "Polygon" or "Polygons", or ANY, which requires obj to be an array with at least two columns |
two-column matrix; the first column has the minimum, the second the maximum values; rows represent the spatial dimensions
object deriving from class "Spatial"
an array with at least two columns
object deriving from class "Line"
object deriving from class "Lines"
object deriving from class "Polygon"
object deriving from class "Polygons"
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) bbox(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE bbox(meuse.grid)
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) bbox(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE bbox(meuse.grid)
Create a vector of ‘n’ “contiguous” colors.
bpy.colors(n = 100, cutoff.tails = 0.1, alpha = 1.0)
bpy.colors(n = 100, cutoff.tails = 0.1, alpha = 1.0)
n |
number of colors (>= 1) to be in the palette |
cutoff.tails |
tail fraction to be cut off on each side. If 0, this palette runs from black to white; by cutting off the tails, it runs from blue to yellow, which looks nicer. |
alpha |
numeric; alpha transparency, 0 is fully transparent, 1 is opaque. |
A character vector, ‘cv’, of color names. This can be used either to create a user-defined color palette for subsequent graphics by ‘palette(cv)’, a ‘col=’ specification in graphics functions or in ‘par’.
This color map prints well on black-and-white printers.
unknown; the pallette was posted to gnuplot-info a few decades ago; R implementation Edzer Pebesma, [email protected]
bpy.colors(10) p <- expand.grid(x=1:30,y=1:30) p$z <- p$x + p$y coordinates(p) <- c("x", "y") gridded(p) <- TRUE image(p, col = bpy.colors(100), asp = 1) # require(lattice) # trellis.par.set("regions", list(col=bpy.colors())) # make this default pallette
bpy.colors(10) p <- expand.grid(x=1:30,y=1:30) p$z <- p$x + p$y coordinates(p) <- c("x", "y") gridded(p) <- TRUE image(p, col = bpy.colors(100), asp = 1) # require(lattice) # trellis.par.set("regions", list(col=bpy.colors())) # make this default pallette
Create a bubble plot of spatial data, with options for bicolour residual plots (xyplot wrapper)
bubble(obj, zcol = 1, ..., fill = TRUE, maxsize = 3, do.sqrt = TRUE, pch, col = c("#d01c8b", "#4dac26"), key.entries = quantile(data[,zcol]), main, identify = FALSE, labels = row.names(data.frame(obj)), key.space = "right", scales = list(draw = FALSE), xlab = NULL, ylab = NULL, panel = panel.bubble, sp.layout = NULL, xlim = bbexpand(bbox(obj)[1,], 0.04), ylim = bbexpand(bbox(obj)[2,], 0.04))
bubble(obj, zcol = 1, ..., fill = TRUE, maxsize = 3, do.sqrt = TRUE, pch, col = c("#d01c8b", "#4dac26"), key.entries = quantile(data[,zcol]), main, identify = FALSE, labels = row.names(data.frame(obj)), key.space = "right", scales = list(draw = FALSE), xlab = NULL, ylab = NULL, panel = panel.bubble, sp.layout = NULL, xlim = bbexpand(bbox(obj)[1,], 0.04), ylim = bbexpand(bbox(obj)[2,], 0.04))
obj |
object of, or extending, class SpatialPointsDataFrame or SpatialGridDataFrame, see coordinates or SpatialPointsDataFrame; the object knows about its spatial coordinates |
zcol |
z-variable column name, or column number after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column |
fill |
logical; if TRUE, filled circles are plotted (pch = 16), else open circles (pch = 1); the pch argument overrides this |
maxsize |
|
do.sqrt |
logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable |
pch |
plotting character |
col |
colours to be used; numeric vector of size two: first value is for negative values, second for positive values. Default colors: 5-class PiYG from colorbrewer.org. |
key.entries |
the values that will be plotted in the key; by default the five quantiles min, q.25, median q.75, max |
main |
main plotting title |
identify |
logical; if true, regular |
labels |
labels argument passed to |
... |
arguments, passed to |
key.space |
location of the key |
scales |
scales argument as passed to xyplot |
xlab |
x-axis label |
ylab |
y-axis label |
panel |
panel function used |
sp.layout |
possible layout items; see spplot |
xlim |
x axis limit |
ylim |
y axis limit |
returns (or plots) the bubble plot; if identify
is TRUE, returns
the indexes (row numbers) of identified points.
Edzer Pebesma
data(meuse) coordinates(meuse) <- c("x", "y") # promote to SpatialPointsDataFrame bubble(meuse, "cadmium", maxsize = 2.5, main = "cadmium concentrations (ppm)", key.entries = 2^(-1:4)) bubble(meuse, "zinc", main = "zinc concentrations (ppm)", key.entries = 100 * 2^(0:4))
data(meuse) coordinates(meuse) <- c("x", "y") # promote to SpatialPointsDataFrame bubble(meuse, "cadmium", maxsize = 2.5, main = "cadmium concentrations (ppm)", key.entries = 2^(-1:4)) bubble(meuse, "zinc", main = "zinc concentrations (ppm)", key.entries = 100 * 2^(0:4))
These two helper functions convert character vectors and decimal degree vectors to the DMS-class representation of degrees, minutes, and decimal seconds. "DMS" objects cannot contain NAs.
char2dms(from, chd = "d", chm = "'", chs = "\"") dd2dms(dd, NS = FALSE)
char2dms(from, chd = "d", chm = "'", chs = "\"") dd2dms(dd, NS = FALSE)
from |
character vector of degree, minute, decimal second data |
chd |
degree character terminator |
chm |
minute character terminator |
chs |
second character terminator |
dd |
numeric vector of decimal degrees |
NS |
logical, TRUE for north/south decimal degrees, FALSE for east/west decimal degrees |
In char2dms, the input data vector should use a regular format, such as that used in the PROJ.4 library, with a trailing capital (NSWE) indicating compass direction.
Both functions return a "DMS" object.
coerce a "DMS"
object to a "numeric"
vector
coerce a "DMS"
object to a "character"
vector (the as.character.DMS
S3 method is also available)
Roger Bivand [email protected]
data(state) str(state.center$y) stateN <- dd2dms(state.center$y, NS=TRUE) str(attributes(stateN)) ch.stateN <- as.character(stateN) str(ch.stateN) stateNa <- char2dms(ch.stateN) str(attributes(stateNa)) ch.stateN <- as(stateN, "character") str(ch.stateN) stateNa <- char2dms(ch.stateN) str(attributes(stateNa))
data(state) str(state.center$y) stateN <- dd2dms(state.center$y, NS=TRUE) str(attributes(stateN)) ch.stateN <- as.character(stateN) str(ch.stateN) stateNa <- char2dms(ch.stateN) str(attributes(stateNa)) ch.stateN <- as(stateN, "character") str(ch.stateN) stateNa <- char2dms(ch.stateN) str(attributes(stateNa))
Displays a basic compass rose, usually to orient a map.
compassRose(x,y,rot=0,cex=1)
compassRose(x,y,rot=0,cex=1)
x , y
|
The position of the center of the compass rose in user units. |
rot |
Rotation for the compass rose in degrees. See Details. |
cex |
The character expansion to use in the display. |
‘compassRose’ displays a conventional compass rose at the position requested. The size of the compass rose is determined by the character expansion, as the central "rose" is calculated relative to the character size. Rotation is in degrees counterclockwise.
nil
Jim Lemon
set spatial coordinates to create a Spatial object, or retrieve spatial coordinates from a Spatial object
coordinates(obj, ...) coordinates(object) <- value
coordinates(obj, ...) coordinates(object) <- value
obj |
object deriving from class "Spatial" |
object |
object of class "data.frame" |
value |
spatial coordinates; either a matrix, list, or data
frame with numeric data, or column names, column number or a
reference: a formula (in the form of e.g. |
... |
additional arguments that may be used by particular methods |
usually an object of class SpatialPointsDataFrame; if the coordinates set cover the full set of variables in object, an object of class SpatialPoints is returned
# data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE class(meuse.grid) bbox(meuse.grid) data(meuse) meuse.xy = meuse[c("x", "y")] coordinates(meuse.xy) <- ~x+y class(meuse.xy)
# data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE class(meuse.grid) bbox(meuse.grid) data(meuse) meuse.xy = meuse[c("x", "y")] coordinates(meuse.xy) <- ~x+y class(meuse.xy)
retrieve (or set) spatial coordinates from (for) spatial data
list with (at least) two numeric components of equal length
data.frame with at least two numeric components
numeric matrix with at least two columns
object of, or deriving from, SpatialPoints
object of, or deriving from, SpatialPointsDataFrame
object of, or deriving from, SpatialPolygons
object of, or deriving from, SpatialPolygonsDataFrame
object of class Line; returned value is matrix
object of class Lines; returned value is list of matrices
object of, or deriving from, SpatialLines; returned value is list of lists of matrices
object of, or deriving from, GridTopology
object of, or deriving from, GridTopology
object of, or deriving from, SpatialPixels
object of, or deriving from, SpatialPixelsDataFrame
object of, or deriving from, SpatialGrid
object of, or deriving from, SpatialGridDataFrame
promote data.frame to object of class SpatialPointsDataFrame-class, by specifying coordinates; see coordinates
retrieve or assign coordinate names for classes in sp
retrieves coordinate names
retrieves coordinate names
retrieves coordinate names
retrieves coordinate names
retrieves coordinate names
retrieves coordinate names
retrieves coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
replace coordinate names
Interface class to the PROJ projection and transformation system. The class is defined as an empty stub accepting value NA in the sp package. The initiation function may call the PROJ library through sf to verify the argument set against those known in the library, returning error messages where necessary. If the "CRS"
object is instantiated using CRS()
with sf using PROJ >= 6 and GDAL >= 3, the object may also have a WKT2 (2019) string carried as a comment
. The arguments for a Proj.4 string must be entered exactly as in the Proj.4 documentation, in particular there cannot be any white space in +<key>=<value>
strings, and successive such strings can only be separated by blanks. Note that only “+proj=longlat +ellps=WGS84” is accepted for geographical coordinates, which must be ordered (eastings, northings); the “+ellps=” definition must be given (or expanded internally from a given “+datum=” value) for recent versions of the Proj.4 library, and should be set to an appropriate value.
CRS(projargs, doCheckCRSArgs=TRUE, SRS_string=NULL, get_source_if_boundcrs=TRUE, use_cache=TRUE) identicalCRS(x,y)
CRS(projargs, doCheckCRSArgs=TRUE, SRS_string=NULL, get_source_if_boundcrs=TRUE, use_cache=TRUE) identicalCRS(x,y)
projargs |
A character string of projection arguments; the arguments must be entered exactly as in the PROJ.4 documentation; if the projection is unknown, use |
doCheckCRSArgs |
default TRUE |
SRS_string |
default NULL, only used when sf is built with PROJ >= 6 and GDAL >= 3; a valid WKT string or SRS definition such as |
get_source_if_boundcrs |
(from rgdal 1.5-17, default TRUE) The presence of the |
use_cache |
default TRUE, if FALSE ignore cached lookup values |
x |
object having a proj4string method,
or if |
y |
object of class Spatial, or having a proj4string method |
CRS
returns on success an object of class
CRS. identicalCRS
returns a logical, indicating
whether x
and y
have identical CRS, or if y
is missing whether all objects in list x
have identical CRS.
Objects can be created by calls of the form CRS("projargs")
, where "projargs" is a valid string of PROJ.4 arguments. If the argument is a zero-length string or a character NA
, the object records NA
. If the "CRS"
object is instantiated using CRS()
with sf using PROJ >= 6 and GDAL >= 3, the object may also have a WKT2 (2019) string carried as a comment
. The initiation function may call the PROJ library through sf to verify the argument set against those known in the library, returning error messages where necessary.
projargs
:Object of class "character"
: projection arguments; the arguments must be entered exactly as in the PROJ.4 documentation, in particular there cannot be any white space in +<arg>=<value> strings, and successive such strings can only be separated by blanks.
signature(object = "CRS")
: print deprecated Proj.4 projection arguments and WKT2 2019 representation if available
signature(object = "CRS")
: return WKT comment on object
rebuild a CRS object, usually used to add a WKT comment with PROJ >= 6 and GDAL >= 3
Lists of projections may be seen by using the programs installed with the PROJ.4 library, in particular proj and cs2cs; with the latter, -lp lists projections, -le ellipsoids, -lu units, and -ld datum(s) known to the installed software (available in sf using sf_proj_info
). These are added to in successive releases, so tracking the website or compiling and installing the most recent revisions will give the greatest choice. Finding the very important datum transformation parameters to be given with the +towgs84 tag is a further challenge, and is essential when the datums used in data to be used together differ. Tracing projection arguments is easier now than before the mass ownership of GPS receivers raised the issue of matching coordinates from different argument sets (GPS output and paper map, for example). See GridsDatums
, sf_proj_info
for help in finding CRS definitions.
The 4.9.1 release of the PROJ library omitted a small file of defaults, leading to reports of “major axis or radius = 0 or not given” errors. From 0.9-3, rgdal checks for the presence of this file (proj_def.dat), and if not found, and under similar conditions to those used by PROJ.4, adds “+ellps=WGS84” to the input string being checked by checkCRSArgs
The “+no_defs” tag ignores the file of defaults, and the default work-around implemented to get around this problem; strings including “init” and “datum” tags also trigger the avoidance of the work-around. Now messages are issued when a candidate CRS is checked; they may be suppressed using suppressMessages
.
From release 6 of the PROJ library, when used in building sf with GDAL >= 3, the +datum=
key in the Proj.4 string CRS representation is deprecated, and the +towgs84=
and +nadgrids=
keys may be deprecated soon. For this reason, sp and sf are starting to use WKT2 (2019) string representations. In sp, the "CRS"
object in itself remains unchanged, but the content of its "projargs"
slot may be degraded. To work around the degradation, a comment
is added around the "CRS"
object containing a WKT2 (2019) string when sf is available and built with PROJ >= 6 and GDAL >=3.
Roger Bivand [email protected]
CRS() CRS("") CRS(as.character(NA)) CRS("+proj=longlat +datum=WGS84") run <- FALSE run <- require(sf) if (run) { print((CRS("+proj=longlat +datum=NAD27"))) } if (run) { print((CRS("+init=epsg:4267"))) } if (run) { print((CRS("+init=epsg:26978"))) } if (run) { print((CRS(paste("+proj=sterea +lat_0=52.15616055555555", "+lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel", " +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812 +units=m")))) } if (run) { print((CRS("+init=epsg:28992"))) } if (run) { print((CRS("EPSG:28992"))) } if (run) { print((CRS(SRS_string="EPSG:28992"))) } if (run) { o <- try(CRS(SRS_string="ESRI:102760")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- try(CRS("EPSG:4326")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- try(CRS("ESRI:102760")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") } if (run && !is.null(comment(slot(o, "proj4string")))) { cat(wkt(o), sep="\n") cat(wkt(slot(o, "proj4string")), sep="\n") }
CRS() CRS("") CRS(as.character(NA)) CRS("+proj=longlat +datum=WGS84") run <- FALSE run <- require(sf) if (run) { print((CRS("+proj=longlat +datum=NAD27"))) } if (run) { print((CRS("+init=epsg:4267"))) } if (run) { print((CRS("+init=epsg:26978"))) } if (run) { print((CRS(paste("+proj=sterea +lat_0=52.15616055555555", "+lon_0=5.38763888888889 +k=0.999908 +x_0=155000 +y_0=463000 +ellps=bessel", " +towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812 +units=m")))) } if (run) { print((CRS("+init=epsg:28992"))) } if (run) { print((CRS("EPSG:28992"))) } if (run) { print((CRS(SRS_string="EPSG:28992"))) } if (run) { o <- try(CRS(SRS_string="ESRI:102760")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- try(CRS("EPSG:4326")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- try(CRS("ESRI:102760")) if (!inherits(o, "try-error")) print((o)) } if (run) { o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") } if (run && !is.null(comment(slot(o, "proj4string")))) { cat(wkt(o), sep="\n") cat(wkt(slot(o, "proj4string")), sep="\n") }
draw axes on a plot using degree symbols in numbers
degAxis(side, at, labels, ...)
degAxis(side, at, labels, ...)
side |
integer; see axis |
at |
numeric; if missing, axTicks is called for nice values; see axis |
labels |
character; if omitted labels are constructed with degree symbols, ending in N/S/E/W; in case of negative degrees, sign is reversed and S or W is added; see axis |
... |
passed to the actual axis call |
axis is plotted on current graph
decimal degrees are used if variation is small, instead of minutes and seconds
xy = cbind(x = 2 * runif(100) - 1, y = 2 * runif(100) - 1) plot(SpatialPoints(xy, proj4string = CRS("+proj=longlat +ellps=WGS84")),xlim=c(-1,1),ylim=c(-1,1)) degAxis(1) degAxis(2, at = c(-1,-0.5,0,0.5,1)) #
xy = cbind(x = 2 * runif(100) - 1, y = 2 * runif(100) - 1) plot(SpatialPoints(xy, proj4string = CRS("+proj=longlat +ellps=WGS84")),xlim=c(-1,1),ylim=c(-1,1)) degAxis(1) degAxis(2, at = c(-1,-0.5,0,0.5,1)) #
retrieves spatial dimensions box from spatial data
dimensions(obj)
dimensions(obj)
obj |
object deriving from class "Spatial" |
two-column matrix; the first column has the minimum, the second the maximum values; rows represent the spatial dimensions
object deriving from class "Spatial"
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) dimensions(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE dimensions(meuse.grid)
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) dimensions(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE dimensions(meuse.grid)
disaggregate SpatialLines, SpatialLinesDataFrame, SpatialPolygons, or SpatialPolygonsDataFrame objects, using functions from rgeos to handle polygon hole nesting
disaggregate(x, ...)
disaggregate(x, ...)
x |
object of class SpatialLines or SpatialPolygons |
... |
ignored |
object of class SpatialLines or SpatialPolygons, where groups of Line or Polygon are disaggregated to one Line per Lines, or one Polygon per Polygons, respectively.
Robert Hijmans, Edzer Pebesma
The class provides a container for coordinates stored as degree, minute, decimal second values.
Objects can be created by calls of the form new("DMS", ...)
, converted from decimal degrees using dd2dms()
, or converted from character strings using char2dms()
.
WS
:Object of class "logical"
TRUE if input value negative
deg
:Object of class "numeric"
degrees
min
:Object of class "numeric"
minutes
sec
:Object of class "numeric"
decimal seconds
NS
:Object of class "logical"
TRUE if input value is a Northing
signature(from = "DMS", to = "numeric")
: convert to decimal degrees
signature(object = "DMS")
: print data values
Roger Bivand [email protected]
data(state) dd2dms(state.center$x) dd2dms(state.center$y, NS=TRUE) as.numeric(dd2dms(state.center$y)) as(dd2dms(state.center$y, NS=TRUE), "numeric") as.numeric.DMS(dd2dms(state.center$y)) state.center$y
data(state) dd2dms(state.center$x) dd2dms(state.center$y, NS=TRUE) as.numeric(dd2dms(state.center$y)) as(dd2dms(state.center$y, NS=TRUE), "numeric") as.numeric.DMS(dd2dms(state.center$y)) state.center$y
Methods for function elide
to translate and disguise coordinate placing in the real world.
elide(obj, ...)
elide(obj, ...)
obj |
object to be elided |
... |
other arguments:
|
The methods return objects of the input class object with elided coordinates; the coordinate reference system is not set. Note that if the input coordinates or centroids are in the data slot data.frame of the input object, they should be removed before the use of these methods, otherwise they will betray the input positions.
elides object
elides object
elides object
elides object
elides object
elides object
Rotation code kindly contributed by Don MacQueen
data(meuse) coordinates(meuse) <- c("x", "y") proj4string(meuse) <- CRS("+init=epsg:28992") data(meuse.riv) river_polygon <- Polygons(list(Polygon(meuse.riv)), ID="meuse") rivers <- SpatialPolygons(list(river_polygon)) proj4string(rivers) <- CRS("+init=epsg:28992") rivers1 <- elide(rivers, reflect=c(TRUE, TRUE), scale=TRUE) meuse1 <- elide(meuse, bb=bbox(rivers), reflect=c(TRUE, TRUE), scale=TRUE) opar <- par(mfrow=c(1,2)) plot(rivers, axes=TRUE) plot(meuse, add=TRUE) plot(rivers1, axes=TRUE) plot(meuse1, add=TRUE) par(opar) meuse1 <- elide(meuse, shift=c(10000, -10000)) bbox(meuse) bbox(meuse1) rivers1 <- elide(rivers, shift=c(10000, -10000)) bbox(rivers) bbox(rivers1) meuse1 <- elide(meuse, rotate=-30, center=apply(bbox(meuse), 1, mean)) bbox(meuse) bbox(meuse1) plot(meuse1, axes=TRUE)
data(meuse) coordinates(meuse) <- c("x", "y") proj4string(meuse) <- CRS("+init=epsg:28992") data(meuse.riv) river_polygon <- Polygons(list(Polygon(meuse.riv)), ID="meuse") rivers <- SpatialPolygons(list(river_polygon)) proj4string(rivers) <- CRS("+init=epsg:28992") rivers1 <- elide(rivers, reflect=c(TRUE, TRUE), scale=TRUE) meuse1 <- elide(meuse, bb=bbox(rivers), reflect=c(TRUE, TRUE), scale=TRUE) opar <- par(mfrow=c(1,2)) plot(rivers, axes=TRUE) plot(meuse, add=TRUE) plot(rivers1, axes=TRUE) plot(meuse1, add=TRUE) par(opar) meuse1 <- elide(meuse, shift=c(10000, -10000)) bbox(meuse) bbox(meuse1) rivers1 <- elide(rivers, shift=c(10000, -10000)) bbox(rivers) bbox(rivers1) meuse1 <- elide(meuse, rotate=-30, center=apply(bbox(meuse), 1, mean)) bbox(meuse) bbox(meuse1) plot(meuse1, axes=TRUE)
rearrange SpatialPointsDataFrame for plotting with spplot or levelplot
flipHorizontal(x) flipVertical(x)
flipHorizontal(x) flipVertical(x)
x |
object of class SpatialGridDataFrame |
object of class SpatialGridDataFrame, with pixels flipped horizontally or vertically. Note that the spatial structure is destroyed (or at least: drastically changed).
Michael Sumner
data(meuse.grid) # data frame gridded(meuse.grid) = c("x", "y") # promotes to fullgrid(meuse.grid) = TRUE d = meuse.grid["dist"] image(d, axes=TRUE) image(flipHorizontal(d), axes=TRUE) image(flipVertical(d), axes=TRUE)
data(meuse.grid) # data frame gridded(meuse.grid) = c("x", "y") # promotes to fullgrid(meuse.grid) = TRUE d = meuse.grid["dist"] image(d, axes=TRUE) image(flipHorizontal(d), axes=TRUE) image(flipVertical(d), axes=TRUE)
geometry retrieves the SpatialXxx object from a SpatialXxxDataFrame object, with Xxx Lines, Points, Polygons, Grid, or Pixels. geometry<- converts a data.frame into a Spatial object.
geometry(obj) geometry(obj) <- value
geometry(obj) geometry(obj) <- value
obj |
in case of assignment, a data.frame, else an object of class Spatial |
value |
object of class Spatial |
Edzer Pebesma, [email protected]
data(meuse) m = meuse coordinates(m) = meuse[, c("x", "y")] pts = geometry(m) class(pts) geometry(meuse) = pts class(meuse) identical(m, meuse) # TRUE
data(meuse) m = meuse coordinates(m) = meuse[, c("x", "y")] pts = geometry(m) class(pts) geometry(meuse) = pts class(meuse) identical(m, meuse) # TRUE
returns logical (TRUE or FALSE) telling whether the object is gridded or not; in assignment promotes a non-gridded structure to a gridded one, or demotes a gridded structure back to a non-structured one.
gridded(obj) gridded(obj) <- value fullgrid(obj) fullgrid(obj) <- value gridparameters(obj)
gridded(obj) gridded(obj) <- value fullgrid(obj) fullgrid(obj) <- value gridparameters(obj)
obj |
object deriving from class "Spatial" (for gridded), or object of class SpatialGridDataFrame-class (for fullgrid and gridparameters) |
value |
logical replacement values, TRUE or FALSE |
if obj derives from class Spatial, gridded(object) will tell whether it is has topology on a regular grid; if assigned TRUE, if the object derives from SpatialPoints and has gridded topology, grid topology will be added to object, and the class of the object will be promoted to SpatialGrid-class or SpatialGridDataFrame-class
fullgrid
returns a logical, telling whether the grid is full
and ordered (i.e., in full matrix form), or whether it is not full
or unordered (i.e. a list of points that happen to lie on a grid. If
assigned, the way the points are stored may be changed. Changing a set
of points to full matrix form and back may change the original order of
the points, and will remove duplicate points if they were present.
gridparameters
returns, if obj
inherits from
SpatialGridDataFrame its grid parameters, else it returns numeric(0). The
returned value is a data.frame with three columns, named cellcentre.offset
("lower left cell centre coordinates"), cellsize, and cells.dim (cell
dimension); the rows correspond to the spatial dimensions.
object deriving from class "Spatial"
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) class(S) plot(S) gridded(S) <- TRUE gridded(S) class(S) summary(S) plot(S) gridded(S) <- FALSE gridded(S) class(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE plot(meuse.grid) # not much good summary(meuse.grid)
# just 9 points on a grid: x <- c(1,1,1,2,2,2,3,3,3) y <- c(1,2,3,1,2,3,1,2,3) xy <- cbind(x,y) S <- SpatialPoints(xy) class(S) plot(S) gridded(S) <- TRUE gridded(S) class(S) summary(S) plot(S) gridded(S) <- FALSE gridded(S) class(S) # data.frame data(meuse.grid) coordinates(meuse.grid) <- ~x+y gridded(meuse.grid) <- TRUE plot(meuse.grid) # not much good summary(meuse.grid)
create neighbourhood (nb) object from grid geometry
gridIndex2nb(obj, maxdist = sqrt(2), fullMat = TRUE, ...)
gridIndex2nb(obj, maxdist = sqrt(2), fullMat = TRUE, ...)
obj |
object of class SpatialGrid or SpatialPixels |
maxdist |
maximum distance to be considered (inclusive), expressed in number of grid cell (sqrt(2) results in queen neighbours) |
fullMat |
use dist to compute distances from grid (row/col) indices; FALSE avoids forming the full distance matrix, at a large performance cost |
... |
arguments passed on to dist |
Object of class nb, which is a list.
The nb object follows the convention of nb objects in package spdep; it is a list with each list element corresponding to a grid cell or pixel; the list element contains the indices of neighbours defined as cells less than maxdist away, measured in cell unit (N/S/E/W neighbour has distance 1).
Unequal grid cell size is ignored; grid cell row/col indices are taken to be the coordinates from which distances are computed.
Edzer Pebesma, [email protected]
plot.nb in package spdep
Create N-S and E-W grid lines over a geographic region; create and plot corresponding labels
gridlines(x, easts = pretty(bbox(x)[1,]), norths = pretty(bbox(x)[2,]), ndiscr = 100) gridat(x, easts = pretty(bbox(x)[1,]), norths = pretty(bbox(x)[2,]), offset = 0.5, side = "WS") ## S3 method for class 'SpatialLines' labels(object, labelCRS, side = 1:2, ...) ## S3 method for class 'SpatialPointsDataFrame' text(x, ...)
gridlines(x, easts = pretty(bbox(x)[1,]), norths = pretty(bbox(x)[2,]), ndiscr = 100) gridat(x, easts = pretty(bbox(x)[1,]), norths = pretty(bbox(x)[2,]), offset = 0.5, side = "WS") ## S3 method for class 'SpatialLines' labels(object, labelCRS, side = 1:2, ...) ## S3 method for class 'SpatialPointsDataFrame' text(x, ...)
x |
object deriving from class Spatial-class |
easts |
numeric; east-west values for vertical lines |
norths |
numeric; north-south values for horizontal lines |
ndiscr |
integer; number of points used to discretize the line, could be set to 2, unless the grid is (re)projected |
offset |
offset value to be returned, see text |
object |
SpatialLines-class object, as returned by |
labelCRS |
the CRS in which the grid lines were drawn and labels should be
printed; if missing, the CRS from |
side |
for |
... |
for |
gridlines
returns an object of class
SpatialLines-class, with lines as specified; the return
object inherits the projection information of x
; gridat
returns a SpatialPointsDataFrame with points at the west and south
ends of the grid lines created by gridlines
, with degree
labels.
The labels
method for SpatialLines
objects returns a
SpatialPointsDataFrame-class object with the parameters needed
to print labels below and left of the gridlines. The locations for
the labels are those of proj4string(object)
the labels also
unless labelCRS
is given, in which case they are in that CRS.
This object is prepared to be plotted with text
:
The text
method for SpatialPointsDataFrame
puts text labels
on its coordinates, and takes care of attributes pos
, labels
,
srt
and offset
; see text.
Edzer Pebesma, [email protected], using example code of Roger Bivand.
run <- FALSE if (requireNamespace("sf", quietly=TRUE)) run <- TRUE data(meuse) coordinates(meuse) = ~x+y plot(meuse) plot(gridlines(meuse), add = TRUE) text(labels(gridlines(meuse))) title("default gridlines within Meuse bounding box") if (run) { proj4string(meuse) <- CRS("+init=epsg:28992") crs.longlat <- CRS("+init=epsg:4326") meuse_ll <- spTransform(meuse, crs.longlat) grd <- gridlines(meuse_ll) grd_x <- spTransform(grd, CRS("+init=epsg:28992")) # labels South and West: plot(meuse) plot(grd_x, add=TRUE, lty=2) grdat_ll <- gridat(meuse_ll) grdat_x <- spTransform(grdat_ll, CRS("+init=epsg:28992")) text(grdat_x) } if (run) { # labels North and East: plot(meuse) plot(grd_x, add=TRUE, lty=2) grdat_ll <- gridat(meuse_ll, side="EN") grdat_x <- spTransform(grdat_ll, CRS("+init=epsg:28992")) text(grdat_x) } if (run) { # now using labels: plot(meuse) plot(grd_x, add=TRUE, lty=2) text(labels(grd_x, crs.longlat)) } if (run) { # demonstrate axis labels with angle, both sides: sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), crs.longlat) laea = CRS("+proj=laea +lat_0=30 +lon_0=-40") sp.l = spTransform(sp, laea) plot(sp.l, expandBB = c(0, 0.05, 0, .05)) gl = spTransform(gridlines(sp), laea) plot(gl, add = TRUE) text(labels(gl, crs.longlat)) text(labels(gl, crs.longlat, side = 3:4), col = 'red') title("curved text label demo") } if (run) { # polar: pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), crs.longlat) polar = CRS("+init=epsg:3031") gl = spTransform(gridlines(pts, easts = seq(-180,180,20), ndiscr = 100), polar) plot(spTransform(pts, polar), expandBB = c(.05,0,.05,0)) lines(gl) l = labels(gl, crs.longlat, side = 3) l$pos = NULL # pos is too simple, use adj: text(l, adj = c(0.5, -0.5)) l = labels(gl, crs.longlat, side = 4) l$srt = 0 # otherwise they end up upside-down text(l) title("grid line labels on polar projection, epsg 3031") } ## Not run: if (require(maps)) demo(polar) # adds the map of the antarctic ## End(Not run)
run <- FALSE if (requireNamespace("sf", quietly=TRUE)) run <- TRUE data(meuse) coordinates(meuse) = ~x+y plot(meuse) plot(gridlines(meuse), add = TRUE) text(labels(gridlines(meuse))) title("default gridlines within Meuse bounding box") if (run) { proj4string(meuse) <- CRS("+init=epsg:28992") crs.longlat <- CRS("+init=epsg:4326") meuse_ll <- spTransform(meuse, crs.longlat) grd <- gridlines(meuse_ll) grd_x <- spTransform(grd, CRS("+init=epsg:28992")) # labels South and West: plot(meuse) plot(grd_x, add=TRUE, lty=2) grdat_ll <- gridat(meuse_ll) grdat_x <- spTransform(grdat_ll, CRS("+init=epsg:28992")) text(grdat_x) } if (run) { # labels North and East: plot(meuse) plot(grd_x, add=TRUE, lty=2) grdat_ll <- gridat(meuse_ll, side="EN") grdat_x <- spTransform(grdat_ll, CRS("+init=epsg:28992")) text(grdat_x) } if (run) { # now using labels: plot(meuse) plot(grd_x, add=TRUE, lty=2) text(labels(grd_x, crs.longlat)) } if (run) { # demonstrate axis labels with angle, both sides: sp = SpatialPoints(rbind(c(-101,9), c(-101,55), c(-19,9), c(-19,55)), crs.longlat) laea = CRS("+proj=laea +lat_0=30 +lon_0=-40") sp.l = spTransform(sp, laea) plot(sp.l, expandBB = c(0, 0.05, 0, .05)) gl = spTransform(gridlines(sp), laea) plot(gl, add = TRUE) text(labels(gl, crs.longlat)) text(labels(gl, crs.longlat, side = 3:4), col = 'red') title("curved text label demo") } if (run) { # polar: pts=SpatialPoints(rbind(c(-180,-70),c(0,-70),c(180,-89),c(180,-70)), crs.longlat) polar = CRS("+init=epsg:3031") gl = spTransform(gridlines(pts, easts = seq(-180,180,20), ndiscr = 100), polar) plot(spTransform(pts, polar), expandBB = c(.05,0,.05,0)) lines(gl) l = labels(gl, crs.longlat, side = 3) l$pos = NULL # pos is too simple, use adj: text(l, adj = c(0.5, -0.5)) l = labels(gl, crs.longlat, side = 4) l$srt = 0 # otherwise they end up upside-down text(l) title("grid line labels on polar projection, epsg 3031") } ## Not run: if (require(maps)) demo(polar) # adds the map of the antarctic ## End(Not run)
A data.frame of years and months of Grids & Datums column publications by country and country code.
data("GridsDatums")
data("GridsDatums")
A data frame with 241 observations on the following 4 variables.
country
name of PE&RS column
month
issue month
year
publication year
ISO
ISO code for country
The journal Photogrammetric Engineering & Remote Sensing, run by the American Society for Photogrammetry and Remote Sensing (ASPRS), began publishing a more-or-less monthly column on the spatial reference systems used in different countries, including their datums. The column first appeared in September 1997, and continued until March 2016; subsequent columns are updated reprints of previous ones. Some also cover other topics, such as world and Martian spatial reference systems. They are written by Clifford J. Mugnier, Louisiana State University, Fellow Emeritus ASPRS. To access the columns, visit https://www.asprs.org/asprs-publications/grids-and-datums.
https://www.asprs.org/asprs-publications/grids-and-datums
data(GridsDatums) GridsDatums[grep("Norway", GridsDatums$country),] GridsDatums[grep("Google", GridsDatums$country),] GridsDatums[grep("^Mars$", GridsDatums$country),]
data(GridsDatums) GridsDatums[grep("Norway", GridsDatums$country),] GridsDatums[grep("Google", GridsDatums$country),] GridsDatums[grep("^Mars$", GridsDatums$country),]
class for defining a rectangular grid of arbitrary dimension
Objects are created by using e.g.
GridTopology(c(0,0), c(1,1), c(5,5))
see SpatialGrid
cellcentre.offset
:numeric; vector with the smallest centroid coordinates for each dimension; coordinates refer to the cell centre
cellsize
:numeric; vector with the cell size in each dimension
cells.dim
:integer; vector with number of cells in each dimension
signature(x = "SpatialGrid")
: calculates coordinates for
each point on the grid
signature(object = "SpatialGrid")
: summarize object
signature(from = "GridTopology", to = "data.frame")
:
convert to data.frame with columns cellcentre.offset, cellsize and cells.dim
Edzer Pebesma, [email protected]
SpatialGridDataFrame-class
, SpatialGrid-class
x = GridTopology(c(0,0), c(1,1), c(5,5)) class(x) x summary(x) coordinates(x) y = SpatialGrid(grid = x) class(y) y
x = GridTopology(c(0,0), c(1,1), c(5,5)) class(x) x summary(x) coordinates(x) y = SpatialGrid(grid = x) class(y) y
Create image for gridded data in SpatialGridDataFrame or SpatialPixelsDataFrame objects.
## S3 method for class 'SpatialGridDataFrame' image(x, attr = 1, xcol = 1, ycol = 2, col = heat.colors(12), red=NULL, green=NULL, blue=NULL, axes = FALSE, xlim = NULL, ylim = NULL, add = FALSE, ..., asp = NA, setParUsrBB=FALSE, interpolate = FALSE, angle = 0, useRasterImage = !(.Platform$GUI[1] == "Rgui" && getIdentification() == "R Console") && missing(breaks), breaks, zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]])])) ## S3 method for class 'SpatialPixelsDataFrame' image(x, ...) ## S3 method for class 'SpatialPixels' image(x, ...) ## S3 method for class 'SpatialGridDataFrame' contour(x, attr = 1, xcol = 1, ycol = 2, col = 1, add = FALSE, xlim = NULL, ylim = NULL, axes = FALSE, ..., setParUsrBB = FALSE) ## S3 method for class 'SpatialPixelsDataFrame' contour(x, ...) as.image.SpatialGridDataFrame(x, xcol = 1, ycol = 2, attr = 1) image2Grid(im, p4 = as.character(NA), digits=10)
## S3 method for class 'SpatialGridDataFrame' image(x, attr = 1, xcol = 1, ycol = 2, col = heat.colors(12), red=NULL, green=NULL, blue=NULL, axes = FALSE, xlim = NULL, ylim = NULL, add = FALSE, ..., asp = NA, setParUsrBB=FALSE, interpolate = FALSE, angle = 0, useRasterImage = !(.Platform$GUI[1] == "Rgui" && getIdentification() == "R Console") && missing(breaks), breaks, zlim = range(as.numeric(x[[attr]])[is.finite(x[[attr]])])) ## S3 method for class 'SpatialPixelsDataFrame' image(x, ...) ## S3 method for class 'SpatialPixels' image(x, ...) ## S3 method for class 'SpatialGridDataFrame' contour(x, attr = 1, xcol = 1, ycol = 2, col = 1, add = FALSE, xlim = NULL, ylim = NULL, axes = FALSE, ..., setParUsrBB = FALSE) ## S3 method for class 'SpatialPixelsDataFrame' contour(x, ...) as.image.SpatialGridDataFrame(x, xcol = 1, ycol = 2, attr = 1) image2Grid(im, p4 = as.character(NA), digits=10)
x |
object of class SpatialGridDataFrame |
attr |
column of attribute variable; this may be
the column name in the data.frame of |
xcol |
column number of x-coordinate, in the coordinate matrix |
ycol |
column number of y-coordinate, in the coordinate matrix |
col |
a vector of colors |
red , green , blue
|
columns names or numbers given instead of the |
axes |
logical; should coordinate axes be drawn? |
xlim |
x-axis limits |
ylim |
y-axis limits |
zlim |
data limits for plotting the (raster, attribute) values |
add |
logical; if FALSE, the image is added to the plot layout setup
by |
... |
arguments passed to image, see examples |
asp |
aspect ratio to be used for plot |
setParUsrBB |
default FALSE, see |
useRasterImage |
if TRUE, use |
breaks |
class breaks for coloured values |
interpolate |
default FALSE, a logical vector (or scalar) indicating whether to apply linear interpolation to the image when drawing, see |
angle |
default 0, angle of rotation (in degrees, anti-clockwise from positive x-axis, about the bottom-left corner), see |
im |
list with components named x, y, and z, as used for |
p4 |
CRS object, proj4 string |
digits |
default 10, number of significant digits to use for checking equal row/column spacing |
as.image.SpatialGridDataFrame
returns the list with
elements x
and y
, containing the coordinates of the cell
centres of a matrix z
, containing the attribute values in matrix
form as needed by image.
Providing xcol
and ycol
attributes seems obsolete,
and it is for 2D data, but it may provide opportunities for plotting
certain slices in 3D data. I haven't given this much thought yet.
filled.contour seems to misinterpret the coordinate values, if we take the image.default manual page as the reference.
Edzer Pebesma
image.default, SpatialGridDataFrame-class,
levelplot in package lattice
. Function
image.plot
in package fields
can be used to make a legend for an
image, see an example in https://stat.ethz.ch/pipermail/r-sig-geo/2007-June/002143.html
data(meuse.grid) coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) = TRUE # promote to SpatialGridDataFrame data(meuse) coordinates(meuse) = c("x", "y") image(meuse.grid["dist"], main = "Distance to river Meuse") points(coordinates(meuse), pch = "+") image(meuse.grid["dist"], main = "Distance to river Meuse", useRasterImage=TRUE) points(coordinates(meuse), pch = "+") # color scale: layout(cbind(1,2), c(4,1),1) image(meuse.grid["dist"]) imageScale(meuse.grid$dist, axis.pos=4, add.axis=FALSE) axis(4,at=c(0,.2,.4,.8), las=2) data(Rlogo) d = dim(Rlogo) cellsize = abs(c(gt[2],gt[6])) cells.dim = c(d[1], d[2]) # c(d[2],d[1]) cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, cells.dim) df = as.vector(Rlogo[,,1]) for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band])) df = as.data.frame(df) names(df) = paste("band", 1:d[3], sep="") Rlogo <- SpatialGridDataFrame(grid = grid, data = df) summary(Rlogo) image(Rlogo, red="band1", green="band2", blue="band3") image(Rlogo, red="band1", green="band2", blue="band3", useRasterImage=FALSE) is.na(Rlogo$band1) <- Rlogo$band1 == 255 is.na(Rlogo$band2) <- Rlogo$band2 == 255 is.na(Rlogo$band3) <- Rlogo$band3 == 255 Rlogo$i7 <- 7 image(Rlogo, "i7") image(Rlogo, red="band1", green="band2", blue="band3", add=TRUE)
data(meuse.grid) coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) = TRUE # promote to SpatialGridDataFrame data(meuse) coordinates(meuse) = c("x", "y") image(meuse.grid["dist"], main = "Distance to river Meuse") points(coordinates(meuse), pch = "+") image(meuse.grid["dist"], main = "Distance to river Meuse", useRasterImage=TRUE) points(coordinates(meuse), pch = "+") # color scale: layout(cbind(1,2), c(4,1),1) image(meuse.grid["dist"]) imageScale(meuse.grid$dist, axis.pos=4, add.axis=FALSE) axis(4,at=c(0,.2,.4,.8), las=2) data(Rlogo) d = dim(Rlogo) cellsize = abs(c(gt[2],gt[6])) cells.dim = c(d[1], d[2]) # c(d[2],d[1]) cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, cells.dim) df = as.vector(Rlogo[,,1]) for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band])) df = as.data.frame(df) names(df) = paste("band", 1:d[3], sep="") Rlogo <- SpatialGridDataFrame(grid = grid, data = df) summary(Rlogo) image(Rlogo, red="band1", green="band2", blue="band3") image(Rlogo, red="band1", green="band2", blue="band3", useRasterImage=FALSE) is.na(Rlogo$band1) <- Rlogo$band1 == 255 is.na(Rlogo$band2) <- Rlogo$band2 == 255 is.na(Rlogo$band3) <- Rlogo$band3 == 255 Rlogo$i7 <- 7 image(Rlogo, "i7") image(Rlogo, red="band1", green="band2", blue="band3", add=TRUE)
Sets or retrieves projection attributes on classes extending SpatialData; set or retrieve option value for error or warning on exceedance of geographical coordinate range, set or retrieve option value for exceedance tolerance of geographical coordinate range. Note that only “+proj=longlat +ellps=WGS84” is accepted for geographical coordinates, which must be ordered (eastings, northings); the “+ellps=” definition must be given (or expanded internally from a given “+datum=” value) for recent versions of the PROJ library, and should be set to an appropriate value.
From release 6 of the PROJ library, when used in building rgdal with GDAL >= 3, the +datum=
key in the Proj.4 string CRS representation is deprecated, and the +towgs84=
and +nadgrids=
keys may be deprecated soon. For this reason, sp, rgdal and sf are starting to use WKT2 (2019) string representations. In sp, the "CRS"
object in itself remains unchanged, but the content of its "projargs"
slot may be degraded. To work around the degradation, a comment
is added around the "CRS"
object containing a WKT2 (2019) string when rgdal is available and built with PROJ >= 6 and GDAL >=3. The wkt()
accessor function returns the WKT2 (2019) string comment belonging to the "CRS"
object.
is.projected(obj) proj4string(obj) proj4string(obj) <- value wkt(obj) get_ll_warn() get_ll_TOL() get_ReplCRS_warn() set_ll_warn(value) set_ll_TOL(value) set_ReplCRS_warn(value)
is.projected(obj) proj4string(obj) proj4string(obj) <- value wkt(obj) get_ll_warn() get_ll_TOL() get_ReplCRS_warn() set_ll_warn(value) set_ll_TOL(value) set_ReplCRS_warn(value)
obj |
An object of class or extending Spatial-class |
value |
For |
proj4 strings are operative through CRAN package rgdal. For strings defined as “longlat”, the minimum longitude should be -180, the maximum longitude 360, the minimum latitude -90, and the maximum latitude 90. Note that the proj4string
replacement method does not project spatial data - for this use spTransform
methods in the rgdal package.
is.projected
returns a logical that may be NA
;
proj4string
returns a character vector of length 1.
Edzer Pebesma, [email protected]
o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") if (!is.null(comment(slot(o, "proj4string")))) { cat(strsplit(wkt(o), "\n")[[1]], sep="\n") cat(strsplit(wkt(slot(o, "proj4string")), "\n")[[1]], sep="\n") } is.projected(CRS("+proj=longlat")) is.projected(CRS("+proj=geocent")) is.projected(CRS("+proj=geocent +units=km"))
o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") if (!is.null(comment(slot(o, "proj4string")))) { cat(strsplit(wkt(o), "\n")[[1]], sep="\n") cat(strsplit(wkt(slot(o, "proj4string")), "\n")[[1]], sep="\n") } is.projected(CRS("+proj=longlat")) is.projected(CRS("+proj=geocent")) is.projected(CRS("+proj=geocent +units=km"))
create objects of class Line
or Lines
from coordinates
Line(coords) Lines(slinelist, ID)
Line(coords) Lines(slinelist, ID)
coords |
2-column numeric matrix with coordinates for a single line |
slinelist |
list with elements of class Line-class |
ID |
a single word unique character identifier, character vector of length one |
Line
returns an object of class Line-class;
Lines
returns an object of class Lines-class
# from the sp vignette: l1 = cbind(c(1,2,3),c(3,2,2)) l1a = cbind(l1[,1]+.05,l1[,2]+.05) l2 = cbind(c(1,2,3),c(1,1.5,1)) Sl1 = Line(l1) Sl1a = Line(l1a) Sl2 = Line(l2) S1 = Lines(list(Sl1, Sl1a), ID="a") S2 = Lines(list(Sl2), ID="b")
# from the sp vignette: l1 = cbind(c(1,2,3),c(3,2,2)) l1a = cbind(l1[,1]+.05,l1[,2]+.05) l2 = cbind(c(1,2,3),c(1,1.5,1)) Sl1 = Line(l1) Sl1a = Line(l1a) Sl2 = Line(l2) S1 = Lines(list(Sl1, Sl1a), ID="a") S2 = Lines(list(Sl2), ID="b")
class for line objects
Objects can be created by calls of the form new("Line", ...)
,
or (preferred) by calls to the function Line
coords
:Object of class "matrix"
, containing the
line coordinates
signature(obj = "Line")
: retrieve coordinates
from line
signature(x = "Line")
: add lines to a plot
Roger Bivand, Edzer Pebesma
Lines-class, SpatialLines-class
class for sets of line objects
SL , Lines
|
an Lines object |
Objects can be created by calls to the function Line
Lines
:Object of class "list"
, containing elements
of class Line-class
ID
:"character"
vector of length one, with unique identifier string
signature(obj = "Line")
: retrieve coordinates
from lines; returns list with matrices
signature(x = "Line")
: add lines to a plot
Roger Bivand, Edzer Pebesma
Lines-class, SpatialLines-class
deprecated function to load the Meuse data set
loadMeuse()
loadMeuse()
none; it prints a warning to run demo(meuse)
demo(meuse)
demo(meuse)
Calculate aspect ratio for plotting geographic maps; create nice degree axis labels
mapasp(data, xlim, ylim) degreeLabelsEW(x) degreeLabelsNS(x)
mapasp(data, xlim, ylim) degreeLabelsEW(x) degreeLabelsNS(x)
data |
object of class or extending |
xlim |
the xlim argument passed (or derived from bounding box) |
ylim |
the ylim argument passed (or derived from bounding box) |
x |
numeric; values at which tics and marks will be generated |
mapasp
is used for the aspect argument in lattice plots and spplot;
let x = dy/dx, with dy and dx the y- and x-size of the map.
let s = 1/cos((My * pi)/180) with My the y coordinate of the middle of the map (the mean of ylim)
for latlong (longlat) data, mapasp
returns s * x.
for other data, mapasp returns "iso".
the values for x
are typically obtained from axTicks
levelplot in package lattice
Merge a Spatial object having a data.frame (i.e. merging of non-spatial attributes).
## S4 method for signature 'Spatial,data.frame' merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by, all.x = TRUE, suffixes = c(".x",".y"), incomparables = NULL, duplicateGeoms = FALSE, ...)
## S4 method for signature 'Spatial,data.frame' merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by, all.x = TRUE, suffixes = c(".x",".y"), incomparables = NULL, duplicateGeoms = FALSE, ...)
x |
object deriving from Spatial |
y |
object of class |
by , by.x , by.y
|
specifications of the common columns. See 'Details' in (base) |
all.x |
logical; if TRUE, then the returned object will have all rows of x, even those that has no matching row in y. These rows will have NAs in those columns that are usually filled with values from y |
suffixes |
character(2) specifying the suffixes to be used for making non-by names() unique. |
incomparables |
values which cannot be matched. See |
duplicateGeoms |
logical; if |
... |
arguments to be passed to or from methods. |
a Spatial* object
Robert J. Hijmans
This data set gives locations and topsoil heavy metal concentrations, along with a number of soil and landscape variables at the observation locations, collected in a flood plain of the river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite samples of an area of approximately 15 m x 15 m.
data(meuse)
data(meuse)
This data frame contains the following columns:
a numeric vector; Easting (m) in Rijksdriehoek (RDH) (Netherlands topographical) map coordinates
a numeric vector; Northing (m) in RDH coordinates
topsoil cadmium concentration, mg kg-1 soil ("ppm"); zero cadmium values in the original data set have been shifted to 0.2 (half the lowest non-zero value)
topsoil copper concentration, mg kg-1 soil ("ppm")
topsoil lead concentration, mg kg-1 soil ("ppm")
topsoil zinc concentration, mg kg-1 soil ("ppm")
relative elevation above local river bed, m
distance to the Meuse; obtained from the nearest cell in meuse.grid, which in turn was derived by a spread (spatial distance) GIS operation, horizontal precision 20 metres; then normalized to $[0,1]$
organic matter, kg (100 kg)-1 soil (percent)
flooding frequency class: 1 = once in two years; 2 = once in ten years; 3 = one in 50 years
soil type according to the 1:50 000 soil map of the Netherlands. 1 = Rd10A (Calcareous weakly-developed meadow soils, light sandy clay); 2 = Rd90C/VII (Non-calcareous weakly-developed meadow soils, heavy sandy clay to light clay); 3 = Bkd26/VII (Red Brick soil, fine-sandy, silty light clay)
lime class: 0 = absent, 1 = present by field test with 5% HCl
landuse class: Aa Agriculture/unspecified = , Ab = Agr/sugar beetsm, Ag = Agr/small grains, Ah = Agr/??, Am = Agr/maize, B = woods, Bw = trees in pasture, DEN = ??, Fh = tall fruit trees, Fl = low fruit trees; Fw = fruit trees in pasture, Ga = home gardens, SPO = sport field, STA = stable yard, Tv = ?? , W = pasture
distance to river Meuse in metres, as obtained during the field survey
row.names refer to the original sample number.
Soil units were mapped with a minimum delination width of 150 m, and so somewhat generalize the landscape.
Approximate equivalent World Reference Base 2002 for Soil Resources names are: Rd10A Gleyic Fluvisols; Rd90C Haplic Fluvisols; Bkd26 Haplic Luvisols. Units Rd90C and Bkd26 have winter groundwater > 80cm, summer > 120cm depth.
Field data were collected by Ruud van Rijn and Mathieu Rikken; compiled for R by Edzer Pebesma; description extended by David Rossiter
M G J Rikken and R P G Van Rijn, 1993. Soil pollution with heavy metals - an inquiry into spatial variation, cost of mapping and the risk evaluation of copper, cadmium, lead and zinc in the floodplains of the Meuse west of Stein, the Netherlands. Doctoraalveldwerkverslag, Dept. of Physical Geography, Utrecht University
P.A. Burrough, R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.
Stichting voor Bodemkartering (STIBOKA), 1970. Bodemkaart van Nederland : Blad 59 Peer, Blad 60 West en 60 Oost Sittard: schaal 1 : 50 000. Wageningen, STIBOKA.
data(meuse) summary(meuse) coordinates(meuse) <- ~x+y proj4string(meuse) <- CRS("+init=epsg:28992")
data(meuse) summary(meuse) coordinates(meuse) <- ~x+y proj4string(meuse) <- CRS("+init=epsg:28992")
The meuse.grid
data frame has 3103 rows and 7 columns;
a grid with 40 m x 40 m spacing that covers the Meuse study area (see meuse)
data(meuse.grid)
data(meuse.grid)
This data frame contains the following columns:
a numeric vector; x-coordinate (see meuse)
a numeric vector; y-coordinate (see meuse)
distance to the Meuse river; obtained by a spread (spatial distance) GIS operation, from border of river; normalized to $[0,1]$
flooding frequency class, for definitions see this item in meuse; it is not known how this map was generated
arbitrary division of the area in two areas, a and b
see part.a
soil type, for definitions see this item in meuse; it is questionable whether these data come from a real soil map, they do not match the published 1:50 000 map
x
and y
are in RD New, the Dutch topographical map
coordinate system. Roger Bivand projected this to UTM in the
R-Grass interface package.
See the meuse documentation
data(meuse.grid) coordinates(meuse.grid) = ~x+y proj4string(meuse.grid) <- CRS("+init=epsg:28992") gridded(meuse.grid) = TRUE spplot(meuse.grid)
data(meuse.grid) coordinates(meuse.grid) = ~x+y proj4string(meuse.grid) <- CRS("+init=epsg:28992") gridded(meuse.grid) = TRUE spplot(meuse.grid)
The object contains the meuse.grid data as a SpatialPointsDataFrame after transformation to WGS84 and geographical coordinates.
data(meuse.grid_ll)
data(meuse.grid_ll)
The format is: Formal class 'SpatialPointsDataFrame' [package "sp"].
See the meuse documentation
data(meuse.grid_ll)
data(meuse.grid_ll)
The meuse.riv
data consists of an outline of the Meuse
river in the area a few kilometers around the meuse
data set.
The meuse.area
polygon has an outline of meuse.grid. See
example below how it can be created from meuse.grid.
data(meuse.riv) data(meuse.area)
data(meuse.riv) data(meuse.area)
meuse.riv
: two-column data.frame containing 176 coordinates.
meuse.area
: two-column matrix with coordinates of outline.
x
and y
are in RDM, the Dutch topographical map
coordinate system. See examples of spTransform
for projection parameters.
See the meuse documentation
data(meuse.riv) plot(meuse.riv, type = "l", asp = 1) data(meuse.grid) coordinates(meuse.grid) = c("x", "y") gridded(meuse.grid) = TRUE image(meuse.grid, "dist", add = TRUE) data(meuse) coordinates(meuse) = c("x", "y") meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)),"meuse.riv"))) spplot(meuse.grid, col.regions=bpy.colors(), main = "meuse.grid", sp.layout=list( list("sp.polygons", meuse.sr), list("sp.points", meuse, pch="+", col="black") ) ) spplot(meuse, "zinc", col.regions=bpy.colors(), main = "zinc, ppm", cuts = c(100,200,400,700,1200,2000), key.space = "right", sp.layout= list("sp.polygons", meuse.sr, fill = "lightblue") )
data(meuse.riv) plot(meuse.riv, type = "l", asp = 1) data(meuse.grid) coordinates(meuse.grid) = c("x", "y") gridded(meuse.grid) = TRUE image(meuse.grid, "dist", add = TRUE) data(meuse) coordinates(meuse) = c("x", "y") meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)),"meuse.riv"))) spplot(meuse.grid, col.regions=bpy.colors(), main = "meuse.grid", sp.layout=list( list("sp.polygons", meuse.sr), list("sp.points", meuse, pch="+", col="black") ) ) spplot(meuse, "zinc", col.regions=bpy.colors(), main = "zinc, ppm", cuts = c(100,200,400,700,1200,2000), key.space = "right", sp.layout= list("sp.polygons", meuse.sr, fill = "lightblue") )
consistent spatial overlay for points, grids and polygons: at the spatial locations of object x retrieves the indexes or attributes from spatial object y
over(x, y, returnList = FALSE, fn = NULL, ...) x %over% y
over(x, y, returnList = FALSE, fn = NULL, ...) x %over% y
x |
geometry (locations) of the queries |
y |
layer from which the geometries or attributes are queried |
returnList |
logical; see value |
fn |
(optional) a function; see value |
... |
arguments passed on to function |
If y
is only geometry an object of length length(x)
.
If returnList
is FALSE
, a vector with the (first) index
of y
for each geometry (point, grid cell centre, polygon
or lines) matching x
. if returnList
is TRUE, a list of
length length(x)
, with list element i
the vector of
all indices of the geometries in y
that correspond to the
$i$-th geometry in x
.
If y
has attribute data, attribute data are
returned. returnList
is FALSE, a data.frame
with
number of rows equal to length(x)
is returned, if it is
TRUE a list with length(x)
elements is returned, with a list
element the data.frame
elements of all geometries in y
that correspond to that element of x
.
returns a numeric
vector of length equal to the number of points; the number is the
index (number) of the polygon of y
in which a point falls;
NA denotes the point does not fall in a polygon; if a point falls
in multiple polygons, the last polygon is recorded.
equal
to the previous method, except that an argument fn=xxx
is
allowed, e.g. fn = mean
which will then report a data.frame
with the mean attribute values of the x
points falling
in each polygon (set) of y
returns a data.frame of the second argument with row entries corresponding to the first argument
returns
the polygon index of points in y
; if x
is
a SpatialPolygonsDataFrame
, a data.frame with rows from
x
corresponding to points in y
is returned.
returns object of class SpatialPointsDataFrame with grid attribute values x at spatial point locations y; NA for NA grid cells or points outside grid, and NA values on NA grid cells.
returns grid values x at spatial point locations y; NA for NA grid cells or points outside the grid
returns grid values x at spatial point locations y; NA for NA grid cells or points outside the grid
returns grid values x at spatial point locations y; NA for NA grid cells or points outside the grid
xx
xx
xx
xx
xx
over
can be seen as a left outer join in SQL; the
match is a spatial intersection.
points on a polygon boundary and points corresponding to a polygon vertex are considered to be inside the polygon.
These methods assume that pixels and grid cells are never
overlapping; for objects of class SpatialPixels
this is
not guaranteed.
Edzer Pebesma, [email protected]
vignette("over")
for examples and figures
panel functions for spplot functions, and functions that can be useful within these panel functions
spplot.key(sp.layout, rows = 1, cols = 1) SpatialPolygonsRescale(obj, offset, scale = 1, fill = "black", col = "black", plot.grid = TRUE, ...) sp.lines(obj, col = 1, ...) sp.points(obj, pch = 3, ...) sp.polygons(obj, col = 1, fill = "transparent", ...) sp.grid(obj, col = 1, alpha = 1,..., at = pretty(obj[[1]]), col.regions = col) sp.text(loc, txt, ...) sp.panel.layout(lst, p.number, ...) bbexpand(x, fraction)
spplot.key(sp.layout, rows = 1, cols = 1) SpatialPolygonsRescale(obj, offset, scale = 1, fill = "black", col = "black", plot.grid = TRUE, ...) sp.lines(obj, col = 1, ...) sp.points(obj, pch = 3, ...) sp.polygons(obj, col = 1, fill = "transparent", ...) sp.grid(obj, col = 1, alpha = 1,..., at = pretty(obj[[1]]), col.regions = col) sp.text(loc, txt, ...) sp.panel.layout(lst, p.number, ...) bbexpand(x, fraction)
sp.layout |
list; see spplot for definition |
rows |
integer; panel row(s) for which the layout should be drawn |
cols |
integer; panel column(s) for which the layout should be drawn |
obj |
object of class SpatialPolygons-class for
|
offset |
offset for shifting a Polygons object |
scale |
scale for rescaling |
fill |
fill color |
col |
line color |
plot.grid |
logical; plot through grid functions (TRUE), or through traditional graphics functions (FALSE) |
pch |
plotting character |
at |
numeric; values at which colour breaks should occur |
col.regions |
colours to fill the grid cells, defaults to col |
loc |
numeric vector of two elements |
txt |
text to be plotted |
alpha |
alpha (transparency) level |
lst |
sp.layout argument, see spplot |
p.number |
panel number; in a panel, panel.number() should be passed to this argument |
x |
length two numeric vector, containing a range |
fraction |
fraction to expand the range by |
... |
arguments passed to the underlying panel, lattice or grid functions |
The panel functions of spplot, panel.gridplot
for grids,
panel.pointsplot
for points, or panel.polygonsplot
for lines
or polygons can be called with arguments (x,y,...)
.
Customizing spplot plots can be done by extending the panel function,
or by supplying an sp.layout argument; see the documentation for
spplot. Inside these panel functions, sp.panel.layout
is called to deal with plotting the items in a sp.layout
object.
SpatialPolygonsRescale
scales and shifts an object of class
SpatialPolygons-class; this is useful e.g. for scale bars, or other
layout items.
sp.lines
, sp.points
, sp.polygons
and sp.text
plot lines, points, polygons or text in a panel.
spplot.key
draws the sp.layout
object at given rows/cols.
sp.pagefn
can be passed as a page
argument, and will
call function spplot.key
for the last panel drawn on a page.
Edzer Pebesma, [email protected]
https://edzer.github.io/sp/ has a graph gallery with examples with R code.
verifies for one or more points whether they fall in a given polygon
point.in.polygon(point.x, point.y, pol.x, pol.y, mode.checked=FALSE)
point.in.polygon(point.x, point.y, pol.x, pol.y, mode.checked=FALSE)
point.x |
numerical array of x-coordinates of points |
point.y |
numerical array of y-coordinates of points |
pol.x |
numerical array of x-coordinates of polygon |
pol.y |
numerical array of y-coordinates of polygon |
mode.checked |
default FALSE, used internally to save time when all the other argument are known to be of storage mode double |
integer array; values are: 0: point is strictly exterior to pol; 1: point is strictly interior to pol; 2: point lies on the relative interior of an edge of pol; 3: point is a vertex of pol.
Uses the C function InPoly(). InPoly is Copyright (c) 1998 by Joseph O'Rourke. It may be freely redistributed in its entirety provided that this copyright notice is not removed.
# open polygon: point.in.polygon(1:10,1:10,c(3,5,5,3),c(3,3,5,5)) # closed polygon: point.in.polygon(1:10,rep(4,10),c(3,5,5,3,3),c(3,3,5,5,3))
# open polygon: point.in.polygon(1:10,1:10,c(3,5,5,3),c(3,3,5,5)) # closed polygon: point.in.polygon(1:10,rep(4,10),c(3,5,5,3,3),c(3,3,5,5,3))
class for spatial polygon
Objects can be created by calls to the function Polygon
ringDir
:Object of class "integer"
; the ring direction of the ring (polygon) coordinates, holes are expected to be anti-clockwise
labpt
:Object of class "numeric"
; an x, y coordinate pair forming the label point of the polygon
area
:Object of class "numeric"
; the planar area of the polygon, does not respect projection as objects of this class have no projection defined
hole
:Object of class "logical"
; does the polygon seem to be a hole
coords
:Object of class "matrix"
; coordinates of the polygon;
first point should equal the last point
Class "Line"
, directly.
No methods defined with class "Polygon" in the signature.
Roger Bivand
Polygons-class, SpatialPolygons-class
sets spatial coordinates to create spatial data, or retrieves spatial coordinates
polygons(obj) polygons(object) <- value
polygons(obj) polygons(object) <- value
obj |
object of class "SpatialPolygons" or "SpatialPolygonsDataFrame" |
object |
object of class "data.frame" |
value |
object of class "SpatialPolygons" |
polygons returns the SpatialPolygons of obj; polygons<- promotes a data.frame to a SpatialPolygonsDataFrame object
grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as.SpatialPolygons.GridTopology(grd) centroids <- coordinates(polys) x <- centroids[,1] y <- centroids[,2] z <- 1.4 + 0.1*x + 0.2*y + 0.002*x*x df <- data.frame(x=x, y=y, z=z, row.names=row.names(polys)) polygons(df) <- polys class(df) summary(df)
grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as.SpatialPolygons.GridTopology(grd) centroids <- coordinates(polys) x <- centroids[,1] y <- centroids[,2] z <- 1.4 + 0.1*x + 0.2*y + 0.002*x*x df <- data.frame(x=x, y=y, z=z, row.names=row.names(polys)) polygons(df) <- polys class(df) summary(df)
Collection of objects of class "Polygon"
Objects can be created by calls to the function Polygons
Polygons
:Object of class "list"
; list with objects
of class Polygon-class
plotOrder
:Object of class "integer"
; order in which
the Polygon objects should be plotted, currently by order of decreasing size
labpt
:Object of class "numeric"
; pair of x, y coordinates giving a label point, the label point of the largest polygon component
ID
:Object of class "character"
; unique identifier string
area
:Object of class "numeric"
; the gross total planar area of the Polygon list but not double-counting holes (changed from 0.9-58 - islands are summed, holes are ignored rather than subtracted); these values are used to make sure that polygons of a smaller area are plotted after polygons of a larger area, does not respect projection as objects of this class have no projection defined
No methods defined with class "Polygons" in the signature.
By default, single polygons (where Polygons is a list of length one) are not expected to be holes, but in multiple polygons, hole definitions for member polygons can be set. Polygon objects belonging to an Polygons object should either not overlap one-other, or should be fully included (as lakes or islands in lakes). They should not be self-intersecting. Checking of hole FALSE/TRUE status for Polygons objects is now handled by round-trip coercion to sf
and back to sp
.
Roger Bivand
Retrieve polygons from SpatialPolygonsDataFrame object
object of, or deriving from, SpatialPolygons
object of, or deriving from, SpatialPolygonsDataFrame
promote data.frame to object of class SpatialPolygonsDataFrame-class, by specifying polygons
read/write to/from ESRI asciigrid format
read.asciigrid(fname, as.image = FALSE, plot.image = FALSE, colname = fname, proj4string = CRS(as.character(NA))) write.asciigrid(x, fname, attr = 1, na.value = -9999, ...)
read.asciigrid(fname, as.image = FALSE, plot.image = FALSE, colname = fname, proj4string = CRS(as.character(NA))) write.asciigrid(x, fname, attr = 1, na.value = -9999, ...)
fname |
file name |
as.image |
logical; if FALSE, a list is returned, ready to be
shown with the |
plot.image |
logical; if TRUE, an image of the map is plotted |
colname |
alternative name for data column if not file name |
proj4string |
A CRS object setting the projection arguments of the Spatial Grid returned |
x |
object of class SpatialGridDataFrame |
attr |
attribute column; if missing, the first column is taken; a name or a column number may be given |
na.value |
numeric; value given to missing valued cells in the resulting map |
... |
arguments passed to write.table, which is used to write the numeric data |
read.asciigrid
returns the grid map read; either as
an object of class SpatialGridDataFrame-class or, if
as.image is TRUE, as list with components x
, y
and z
.
Edzer Pebesma
as.image.SpatialGridDataFrame, image
x <- read.asciigrid(system.file("external/test.ag", package="sp")[1]) class(x) image(x)
x <- read.asciigrid(system.file("external/test.ag", package="sp")[1]) class(x) image(x)
Methods for function recenter
in package sp to shift or re-center geographical coordinates for a Pacific view. All longitudes < 0 are added to 360, to avoid for instance parts of Alaska being represented on the far left and right of a plot because they have values straddling 180 degrees. In general, using a projected coordinate reference system is to be preferred, but this method permits a geographical coordinate reference system to be used. This idea was suggested by Greg Snow, and corresponds to the two world representations in the maps package.
recenter a SpatialPolygons object
recenter a Polygons object
recenter an Polygon object
recenter a SpatialLines object
recenter a Lines object
recenter an Line object
crds <- matrix(c(179, -179, -179, 179, 50, 50, 52, 52), ncol=2) SL <- SpatialLines(list(Lines(list(Line(crds)), "1")), CRS("+proj=longlat +ellps=WGS84")) bbox(SL) SLr <- recenter(SL) bbox(SLr) rcrds <- rbind(crds, crds[1,]) SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")), proj4string=CRS("+proj=longlat +ellps=WGS84")) bbox(SpP) SpPr <- recenter(SpP) bbox(SpPr) opar <- par(mfrow=c(1,2)) plot(SpP) plot(SpPr) par(opar) crds <- matrix(c(-1, 1, 1, -1, 50, 50, 52, 52), ncol=2) SL <- SpatialLines(list(Lines(list(Line(crds)), "1")), CRS("+proj=longlat +ellps=WGS84")) bbox(SL) SLr <- recenter(SL) bbox(SLr) rcrds <- rbind(crds, crds[1,]) SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")), proj4string=CRS("+proj=longlat +ellps=WGS84")) bbox(SpP) SpPr <- recenter(SpP) bbox(SpPr) opar <- par(mfrow=c(1,2)) plot(SpP) plot(SpPr) par(opar)
crds <- matrix(c(179, -179, -179, 179, 50, 50, 52, 52), ncol=2) SL <- SpatialLines(list(Lines(list(Line(crds)), "1")), CRS("+proj=longlat +ellps=WGS84")) bbox(SL) SLr <- recenter(SL) bbox(SLr) rcrds <- rbind(crds, crds[1,]) SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")), proj4string=CRS("+proj=longlat +ellps=WGS84")) bbox(SpP) SpPr <- recenter(SpP) bbox(SpPr) opar <- par(mfrow=c(1,2)) plot(SpP) plot(SpPr) par(opar) crds <- matrix(c(-1, 1, 1, -1, 50, 50, 52, 52), ncol=2) SL <- SpatialLines(list(Lines(list(Line(crds)), "1")), CRS("+proj=longlat +ellps=WGS84")) bbox(SL) SLr <- recenter(SL) bbox(SLr) rcrds <- rbind(crds, crds[1,]) SpP <- SpatialPolygons(list(Polygons(list(Polygon(rcrds)), ID="r1")), proj4string=CRS("+proj=longlat +ellps=WGS84")) bbox(SpP) SpPr <- recenter(SpP) bbox(SpPr) opar <- par(mfrow=c(1,2)) plot(SpP) plot(SpPr) par(opar)
Rlogo jpeg image data as imported by getRasterData
in the rgdal package
data(Rlogo)
data(Rlogo)
The format is: int [1:101, 1:77, 1:3] 255 255 255 255 255 255 255 255 255 255 ...
data(Rlogo) d = dim(Rlogo) cellsize = abs(c(gt[2],gt[6])) cells.dim = c(d[1], d[2]) # c(d[2],d[1]) cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, cells.dim) df = as.vector(Rlogo[,,1]) for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band])) df = as.data.frame(df) names(df) = paste("band", 1:d[3], sep="") Rlogo <- SpatialGridDataFrame(grid = grid, data = df) summary(Rlogo) spplot(Rlogo, zcol=1:3, names.attr=c("red","green","blue"), col.regions=grey(0:100/100), main="example of three-layer (RGB) raster image", as.table=TRUE)
data(Rlogo) d = dim(Rlogo) cellsize = abs(c(gt[2],gt[6])) cells.dim = c(d[1], d[2]) # c(d[2],d[1]) cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, cells.dim) df = as.vector(Rlogo[,,1]) for (band in 2:d[3]) df = cbind(df, as.vector(Rlogo[,,band])) df = as.data.frame(df) names(df) = paste("band", 1:d[3], sep="") Rlogo <- SpatialGridDataFrame(grid = grid, data = df) summary(Rlogo) spplot(Rlogo, zcol=1:3, names.attr=c("red","green","blue"), col.regions=grey(0:100/100), main="example of three-layer (RGB) raster image", as.table=TRUE)
select a number of points by digitizing the area they fall in
select.spatial(data, digitize = TRUE, pch = "+", rownames = FALSE)
select.spatial(data, digitize = TRUE, pch = "+", rownames = FALSE)
data |
data object of class, or extending |
digitize |
logical; if TRUE, points in a digitized polygon are selected; if FALSE, points identified by mouse clicks are selected |
pch |
plotting character used for points |
rownames |
logical; if FALSE, row (coordinate) numbers are returned; if TRUE and data contains a data.frame part, row.names for selected points in the data.frame are returned. |
if rownames == FALSE, array with either indexes (row numbers) of points inside the digitized polygon; if rownames == TRUE, character array with corresponding row names in the data.frame part
point.in.polygon, locator, SpatialPoints-class, SpatialPointsDataFrame-class
data(meuse) ## the following command requires user interaction: left mouse ## selects points, right mouse ends digitizing data(meuse) coordinates(meuse) = c("x", "y") # select.spatial(meuse)
data(meuse) ## the following command requires user interaction: left mouse ## selects points, right mouse ends digitizing data(meuse) coordinates(meuse) = c("x", "y") # select.spatial(meuse)
This package provides S4 classes for importing, manipulating and exporting
spatial data in R, and for methods including print/show, plot, subset,
[
, [[
, \$
, names, dim, summary, and a number of
methods specific to spatial data handling.
Several spatial statistical packages have been around for a long while, but no organized set of classes for spatial data has yet been devised. Many of the spatial packages make their own assumptions, or use their own class definitions for spatial data, making it inconvenient to move from one package to another. This package tries to provide a solid set of classes for many different types of spatial data. The idea is that spatial statistical packages will either support these classes (i.e., directly read and write them) or will provide conversion to them, so that we have a base class set with which any package can exchange. This way, many-to-many conversions can be replace with one-to-many conversions, provided either in this package or the spatial packages. Wherever possible conversion (coercion) functions are automatic, or provided by sp.
External packages that depend on sp will provide importing and exporting from and to external GIS formats, e.g. through GDAL, OGR or shapelib.
In addition, this package tries to provide convenient methods to print, summarize and plot such spatial data.
In principal, geographical data are two-dimensional, on a flat surface (a map) or on a sphere (the earth). This package provides space for dealing with higher dimensional data where possible; this is e.g. very simple for points and grids, but hard to do for polygons. Plotting functions are devised primarily for two-dimensional data, or two-dimensional projections of higher dimensional data.
Central to spatial data is that they have a coordinate reference system, which is coded in object of CRS class. Central to operations on different spatial data sets is that their coordinate reference system is compatible (i.e., identical).
This CRS can be a character string describing a reference system in a way understood by the PROJ.4 projection library, or a (character) missing value. An interface to the PROJ.4 library is available only if the R package rgdal is present.
All spatial classes derive from a basic class Spatial
, which only
provides a bounding box and a CRS. This class has no useful instances, but
useful derived classes.
SpatialPoints extends Spatial and has coordinates. The method coordinates extracts the numeric matrix with coordinates from an object of class SpatialPoints, or from other (possibly derived) classes that have points.
Objects of class SpatialGrid points on a regular grid. Either a full grid is stored or a partial grid (i.e., only the non-missing valued cells); calling coordinates on them will give the coordinates for the grid cells.
SpatialPoints, SpatialPixels and SpatialGrid can be of arbitrary dimension, although most of the effort is in making them work for two dimensional data.
SpatialLines provides lines, and SpatialPolygons provides polygons, i.e., lines that end where they start and do not intersect with itself. SpatialLines and SpatialPolygons only have two-dimensional data.
SpatialPointsDataFrame extends SpatialPoints with a data slot, having a data.frame with attribute data. Similarly, SpatialPixelsDataFrame, SpatialLinesDataFrame, SpatialPolygonsDataFrame extend the primary spatial information with attribute data.
PROJ.4: https://github.com/OSGeo/PROJ
GDAL and OGR: https://gdal.org/.
sp is a collaborative effort of Edzer Pebesma, Roger Bivand, Barry Rowlingson and Virgilo G\'omez-Rubio.
Deprecated functions is sp: getSpP*, getPolygon*, getLines* getSL*
set_evolution_status(value) get_evolution_status()
set_evolution_status(value) get_evolution_status()
value |
evolution status: only 2L to use sf functions in place of rgdal |
For overlay
the new implementation is found in the over
method; this works slightly different and more consistent.
The function outputs a SpatialPolygonsDataFrame object to be used by Mondrian
sp2Mondrian(SP, file, new_format=TRUE)
sp2Mondrian(SP, file, new_format=TRUE)
SP |
a SpatialPolygonsDataFrame object |
file |
file where output is written |
new_format |
default TRUE, creates a text data file and a separate map file; the old format put both data sets in a single file - the map file is named by inserting "MAP_" into the file= argument after the rightmost directory separator (if any) |
At this release, the function writes out a text file with both data and polygon(s) identified as belonging to each row of data.
Patrick Hausmann and Roger Bivand
https://www.theusrus.de/Mondrian/, Ihaka Lecture 1: 28 September 2023, Interactive Graphics and Data Analysis, Antony Unwin https://www.auckland.ac.nz/en/science/about-the-faculty/department-of-statistics/ihaka-lecture-series.html
if (require("sf", quietly=TRUE)) { td <- tempdir() xx <- as(sf::st_read(system.file("shape/nc.shp", package="sf")[1], quiet=TRUE), "Spatial") sp2Mondrian(xx, file=file.path(td, "sids1.txt")) }
if (require("sf", quietly=TRUE)) { td <- tempdir() xx <- as(sf::st_read(system.file("shape/nc.shp", package="sf")[1], quiet=TRUE), "Spatial") sp2Mondrian(xx, file=file.path(td, "sids1.txt")) }
An abstract class from which useful spatial classes are derived
Spatial(bbox, proj4string = CRS(as.character(NA))) ## S3 method for class 'Spatial' subset(x, subset, select, drop = FALSE, ...)
Spatial(bbox, proj4string = CRS(as.character(NA))) ## S3 method for class 'Spatial' subset(x, subset, select, drop = FALSE, ...)
bbox |
a bounding box matrix |
proj4string |
a CRS object |
x |
object of class Spatial |
subset |
|
select |
|
drop |
|
... |
passed through |
are never to be generated; only derived classes can be meaningful
bbox
:Object of class "matrix"
; 2-column matrix
holding the minimum in first and maximum in second column for the
x-coordinate (first row), y-coordinate (second row) and optionally,
for points and grids only, further coordinates. The constructed
Spatial object will be invalid if any bbox values are NA or infinite. The column names must be c("min", "max")
proj4string
:Object of class "CRS"
. The name of this slot was chosen to reflect the use of Proj.4 strings to represent coordinate reference systems (CRS). The slot name will continue to be used, but as PROJ >= 6 and GDAL >= 3 are taken into use for reading files and for projection and transformation, the Proj.4 string CRS representation is being supplemented by a WKT2 (2019) representation. The reason for the modification is that important keys in the Proj.4 string representation are being deprecated in PROJ >= 6 and GDAL >= 3. Legacy "CRS"
objects hold only a valid Proj.4 string, which can be used for unprojecting or reprojecting coordinates; it is initialised to NA. If the "CRS"
object is instantiated using CRS()
with rgdal using PROJ >= 6 and GDAL >= 3, the object may also have a WKT2 (2019) string carried as a comment
. Non-NA strings may be checked for validity in the rgdal package, but attempts to assign a string containing "longlat" to data extending beyond longitude [-180, 360] or lattitude [-90, 90] will be stopped or warned, use set_ll_warn
to warn rather than stop, and set_ll_TOL
to change the default tolerance for the range exceedance tests.
signature(obj = "Spatial")
: retrieves the bbox element
signature(obj = "Spatial")
: retrieves the number
of spatial dimensions spanned
signature(obj = "Spatial")
: logical, tells whether
the data is on a regular spatial grid
signature(x = "Spatial", y = "missing")
: plot method
for spatial objects; does nothing but setting up a plotting region choosing
a suitable aspect if not given(see below), colouring the plot background using either a bg= argument or par("bg"), and possibly drawing axes.
signature(object = "Spatial")
: summarize object
$
retrieves attribute column
$<-
sets or replaces attribute column, or promote a geometry-only object to an object having an attribute
rebuild a CRS object, usually used to add a WKT comment with PROJ >= 6 and GDAL >= 3
The plot method for “Spatial” objects takes the following arguments:
object of class Spatial
default NULL; the x limits (x1, x2) of the plot
default NULL; the y limits of the plot
default NA; the y/x aspect ratio
default FALSE; a logical value indicating whether both axes should be drawn
default par("bg")
; colour to be used for the background of the device region
The style of axis interval calculation to be used for the x-axis
The style of axis interval calculation to be used for the y-axis
A numerical vector of the form c(x, y, len)
which modifies the default way that axes are annotated
default FALSE; set the par
“usr” bounding box; see below
object of class ggmap
, or returned by function RgoogleMaps::GetMap
numeric; factor to expand the plotting region default: bbox(x)
with on
each side (1=below, 2=left, 3=above and 4=right); defaults to c(0,0,0,0)
;
setting xlim
or ylim
overrides this.
passed through
this class is not useful in itself, but all spatial classes in this package derive from it
The default aspect for map plots is 1; if however data are not projected (coordinates are longlat), the aspect is by default set to 1/cos(My * pi)/180) with My the y coordinate of the middle of the map (the mean of ylim, which defaults to the y range of bounding box).
The argument setParUsrBB
may be used to pass the logical value TRUE
to functions within plot.Spatial
. When set to TRUE
, par(“usr”) will be overwritten with c(xlim, ylim)
, which defaults to the bounding box of the spatial object. This is only needed in the particular context of graphic output to a specified device with given width and height, to be matched to the spatial object, when using par(“xaxs”) and par(“yaxs”) in addition to par(mar=c(0,0,0,0))
.
r-spatial team; Edzer Pebesma, [email protected] Roger Bivand, Barry Rowlingson, Virgilio G\'omez-Rubio
SpatialPoints-class
,
SpatialGrid-class
,
SpatialPointsDataFrame-class
,
SpatialGridDataFrame-class
o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") if (!is.null(comment(slot(o, "proj4string")))) { cat(strsplit(wkt(o), "\n")[[1]], sep="\n") cat(strsplit(wkt(slot(o, "proj4string")), "\n")[[1]], sep="\n") }
o <- new("Spatial") proj4string(o) <- CRS("+init=epsg:27700") if (!is.null(comment(slot(o, "proj4string")))) { cat(strsplit(wkt(o), "\n")[[1]], sep="\n") cat(strsplit(wkt(slot(o, "proj4string")), "\n")[[1]], sep="\n") }
class for defining a full, rectangular grid of arbitrary dimension
Objects are created by using e.g.
SpatialGrid(grid)
with grid of class GridTopology-class
grid
object of class GridTopology-class, defining the grid topology (offset, cellsize, dim)
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection
Class "SpatialPoints"
directly;
Class "Spatial"
, by class "SpatialPoints"
.
signature(x = "SpatialGrid")
: calculates coordinates for
each point on the grid; coordinates are not stored in objects of class SpatialGrid
signature(object = "SpatialGrid")
: summarize object
signature(x = "SpatialGrid")
: plots cell centers
signature(x = "SpatialGrid")
: select rows and columns
Edzer Pebesma, [email protected]
SpatialGridDataFrame-class
, SpatialGrid
x = GridTopology(c(0,0), c(1,1), c(5,5)) class(x) x summary(x) coordinates(x) y = SpatialGrid(grid = x) class(y) y
x = GridTopology(c(0,0), c(1,1), c(5,5)) class(x) x summary(x) coordinates(x) y = SpatialGrid(grid = x) class(y) y
Class for spatial attributes that have spatial locations on a (full) regular grid.
Objects can be created by calls of the form as(x,
"SpatialGridDataFrame")
, where x
is of class
SpatialPixelsDataFrame-class, or by importing through rgdal.
Ordered full grids are stored instead or unordered non-NA cells;
grid
:see GridTopology-class; grid parameters
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection
data
:Object of class data.frame, containing attribute data
Class "SpatialGrid"
, directly.
Class "Spatial"
, by class "SpatialGrid"
.
signature(x = "SpatialGridDataFrame")
: retrieves (and calculates!) coordinates
signature(x = "SpatialGridDataFrame")
: selects rows, columns, and attributes; returns an
object of class SpatialGridDataFrame
signature(x = "SpatialGridDataFrame")
: coerce to matrix; increasing col index corresponds to decreasing y coordinate, row index increases with coordinate index
signature(x = "SpatialGridDataFrame")
: coerce to array; increasing array index for the second dimension corresponds to decreasing coordinates, all other coordinate dimensions increase with array index
signature(...)
: if arguments have identical topology, combine their
attribute values
The plot methods for “SpatialPixelsDataFrame” or “SpatialGridDataFrame” objects take the following arguments:
object of class SpatialPixelsDataFrame or SpatialGridDataFrame
arguments passed on to image.SpatialGridDataFrame
integer or character, indicating the attribute variable to be plotted; default 1
color ramp to be used; default bpy.colors(100)
for continuous, or
RColorBrewer::brewer.pal(nlevels(x[[1]]), "Set2")
for factor variables
for continuous attributes: values at which color breaks should take place
for continuous attributes:
numeric of length 2, specifying the range of attribute values to be plotted;
default to data range range(as.numeric(x[[attr]])[is.finite(x[[attr]])])
logical: draw x and y axes? default FALSE
character, default "i", see par
character, default equal to xaxs
, see par
numeric or NULL, values at which axis tics and labels should be drawn; default NULL (use pretty)
color, to be used for drawing grid lines; default NA (don't draw grid lines)
integer, 1-4; default 4, see axis
logical: draw axis along scale? default TRUE
what to draw: "image"
, "scale"
, or "both"
; default "both"
size for the scale bar; use lcm to specify in absolute size, or a numeric
value such as 1/6
to specify relative size; default lcm(2.8)
non-negative numeric indicating the amount to shrink the scale length, default 0
for categorical attributes: numeric between 0 and 1, indicating the scale width, default 0.3
for categorical attributes: integer, indicating how many scale categories should fill a complete width; default 15
Edzer Pebesma, [email protected]
SpatialGrid-class
, which does not contain the attribute data,
and SpatialPixelsDataFrame-class which holds possibly incomplete
grids
Plotting gridded data with sp: https://r-spatial.org/r/2016/03/08/plotting-spatial-grids.html
data(meuse.grid) # only the non-missing valued cells coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame x = as(meuse.grid, "SpatialGridDataFrame") # creates the full grid x[["idist"]] = 1 - x[["dist"]] # assigns new attribute image(x["idist"]) # note the single [ for attribute selection # toy example: df = data.frame(z = c(1:6,NA,8,9), xc = c(1,1,1,2,2,2,3,3,3), yc = c(rep(c(0, 1.5, 3),3))) coordinates(df) = ~xc+yc gridded(df) = TRUE df = as(df, "SpatialGridDataFrame") # to full grid image(df["z"]) # draw labels to verify: cc = coordinates(df) z=df[["z"]] zc=as.character(z) zc[is.na(zc)]="NA" text(cc[,1],cc[,2],zc) # the following is weird, but illustrates the concept of row/col selection: fullgrid(meuse.grid) = TRUE image(meuse.grid) image(meuse.grid[20:70, 10:70, "dist"], add = TRUE, col = bpy.colors()) # as.matrix, as.array sgdim = c(3,4) SG = SpatialGrid(GridTopology(rep(0,2), rep(10,2), sgdim)) SGDF = SpatialGridDataFrame(SG, data.frame(val = 1:12)) as.array(SGDF) as.matrix(SGDF) as(SGDF, "array")
data(meuse.grid) # only the non-missing valued cells coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame x = as(meuse.grid, "SpatialGridDataFrame") # creates the full grid x[["idist"]] = 1 - x[["dist"]] # assigns new attribute image(x["idist"]) # note the single [ for attribute selection # toy example: df = data.frame(z = c(1:6,NA,8,9), xc = c(1,1,1,2,2,2,3,3,3), yc = c(rep(c(0, 1.5, 3),3))) coordinates(df) = ~xc+yc gridded(df) = TRUE df = as(df, "SpatialGridDataFrame") # to full grid image(df["z"]) # draw labels to verify: cc = coordinates(df) z=df[["z"]] zc=as.character(z) zc[is.na(zc)]="NA" text(cc[,1],cc[,2],zc) # the following is weird, but illustrates the concept of row/col selection: fullgrid(meuse.grid) = TRUE image(meuse.grid) image(meuse.grid[20:70, 10:70, "dist"], add = TRUE, col = bpy.colors()) # as.matrix, as.array sgdim = c(3,4) SG = SpatialGrid(GridTopology(rep(0,2), rep(10,2), sgdim)) SGDF = SpatialGridDataFrame(SG, data.frame(val = 1:12)) as.array(SGDF) as.matrix(SGDF) as(SGDF, "array")
create objects of class SpatialLines
or
SpatialLinesDataFrame
from
lists of Lines
objects and data.frames; extract list od Lines from a SpatialLines object
SpatialLines(LinesList, proj4string = CRS(as.character(NA))) SpatialLinesDataFrame(sl, data, match.ID = TRUE) as.SpatialLines.SLDF(SLDF) getSpatialLinesMidPoints(SL) LineLength(cc, longlat = FALSE, sum = TRUE) LinesLength(Ls, longlat = FALSE) SpatialLinesLengths(SL, longlat)
SpatialLines(LinesList, proj4string = CRS(as.character(NA))) SpatialLinesDataFrame(sl, data, match.ID = TRUE) as.SpatialLines.SLDF(SLDF) getSpatialLinesMidPoints(SL) LineLength(cc, longlat = FALSE, sum = TRUE) LinesLength(Ls, longlat = FALSE) SpatialLinesLengths(SL, longlat)
LinesList |
list with objects of class Lines-class |
proj4string |
Object of class |
sl , SL
|
object of class SpatialLines-class |
data |
object of class |
match.ID |
logical: (default TRUE): match SpatialLines member
Lines ID slot values with data.frame row names, and re-order the
data frame rows if necessary; if character: indicates the column
in |
SLDF |
SpatialLinesDataFrame object |
Ls |
Object of class |
cc |
Object of class |
longlat |
if FALSE, Euclidean distance, if TRUE Great Circle distance in kilometers |
sum |
logical; if |
SpatialLines
returns object of class SpatialLines
;
SpatialLinesDataFrame
returns object of class SpatialLinesDataFrame
getSpatialLinesMidPoints
returns an object of class SpatialPoints
,each point containing the (weighted) mean of the lines elements; weighted in the sense that mean is called twice.
a class that holds spatial lines
hold a list of Lines objects; each Lines object holds a list of Line (line) objects.
lines
:Object of class "list"
; list members are all of
class Lines-class
bbox
:Object of class "matrix"
; see Spatial-class
proj4string
:Object of class "CRS"
; see CRS-class
Class "Spatial"
, directly.
signature(obj = "SpatialLines")
: select subset of (sets of) lines; NAs are not permitted in the row index
value is a list of lists with matrices
signature(x = "SpatialLines", y = "missing")
:
plot lines in SpatialLines object
signature(x = "SpatialLines")
:
add lines in SpatialLines object to a plot
signature(object = "SpatialLines")
:
rbind-like method, see notes
signature(object = "SpatialLines")
:
summarize object
The plot method for “SpatialLines” objects takes the following arguments:
object of class SpatialLines
default NULL; the x limits (x1, x2) of the plot
default NULL; the y limits of the plot
default 1; default plotting color
default 1; line width
default 1; line type
default FALSE; add to existing plot
default FALSE; a logical value indicating whether both axes should be drawn
default 0; line end style
default 0; line join style
default 10; line mitre limit
passed through
set the par
“usr” bounding box, see note in Spatial-class
rbind
calls the function SpatialLines
, where it is
checked that all IDs are unique. If rbind
-ing SpatialLines
without
unique IDs, it is possible to set the argument makeUniqueIDs = TRUE
, although
it is preferred to change these explicitly with spChFIDs
.
Roger Bivand, Edzer Pebesma
# from the sp vignette: l1 = cbind(c(1,2,3),c(3,2,2)) rownames(l1) = letters[1:3] l1a = cbind(l1[,1]+.05,l1[,2]+.05) rownames(l1a) = letters[1:3] l2 = cbind(c(1,2,3),c(1,1.5,1)) rownames(l2) = letters[1:3] Sl1 = Line(l1) Sl1a = Line(l1a) Sl2 = Line(l2) S1 = Lines(list(Sl1, Sl1a), ID="a") S2 = Lines(list(Sl2), ID="b") Sl = SpatialLines(list(S1,S2)) summary(Sl) plot(Sl, col = c("red", "blue"))
# from the sp vignette: l1 = cbind(c(1,2,3),c(3,2,2)) rownames(l1) = letters[1:3] l1a = cbind(l1[,1]+.05,l1[,2]+.05) rownames(l1a) = letters[1:3] l2 = cbind(c(1,2,3),c(1,1.5,1)) rownames(l2) = letters[1:3] Sl1 = Line(l1) Sl1a = Line(l1a) Sl2 = Line(l2) S1 = Lines(list(Sl1, Sl1a), ID="a") S2 = Lines(list(Sl2), ID="b") Sl = SpatialLines(list(S1,S2)) summary(Sl) plot(Sl, col = c("red", "blue"))
this class holds data consisting of (sets of lines), where each set of lines relates to an attribute row in a data.frame
can be created by the function SpatialLinesDataFrame
data
:Object of class data.frame containing the attribute table
lines
:Object of class "list"
; see SpatialLines-class
bbox
:Object of class "matrix"
; see Spatial-class
proj4string
:Object of class "CRS"
; see CRS-class
Class "SpatialLines"
, directly.
Class "Spatial"
, by class "SpatialLines"
.
Methods defined with class "SpatialLinesDataFrame" in the signature:
signature(x = "SpatialLinesDataFrame")
: subset rows or
columns; in case of row subsetting, the line sets are also subsetted; NAs are not permitted in the row index
signature(obj = "SpatialLinesDataFrame")
: retrieves
a list with lists of coordinate matrices
signature(object = "SpatialLinesDataFrame")
: print method
signature(x = "SpatialLinesDataFrame")
: plot points
signature(object = "SpatialLinesDataFrame")
: add lines to plot
signature(object = "SpatialLinesDataFrame")
:
rbind-like method
rbind
for SpatialLinesDataFrame
is only possible for
objects with unique IDs. If you want to rbind
objects
with duplicated IDs, seespChFIDs
.
Roger Bivand; Edzer Pebesma
create objects of class SpatialMultiPoints-class or
SpatialMultiPointsDataFrame-class from
coordinates, and from coordinates and data.frame
s
SpatialMultiPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL) SpatialMultiPointsDataFrame(coords, data, proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)
SpatialMultiPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL) SpatialMultiPointsDataFrame(coords, data, proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)
coords |
list with in each element a numeric matrix or data.frame with coordinates (each row representing a point); in case of SpatialMultiPointsDataFrame an object of class SpatialMultiPoints-class is also allowed |
proj4string |
projection string of class CRS-class |
bbox |
bounding box matrix, usually NULL and constructed from the data, but may be passed through for coercion purposes if clearly needed |
data |
object of class |
match.ID |
logical or character; if missing, and |
SpatialMultiPoints
returns an object of class SpatialMultiPoints
;
SpatialMultiPointsDataFrame
returns an object of class SpatialMultiPointsDataFrame
;
coordinates, SpatialMultiPoints-class, SpatialMultiPointsDataFrame-class
cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mp = SpatialMultiPoints(list(cl1, cl2, cl3)) mpx = rbind(mp, mp) # rbind method plot(mp, col = 2, cex = 1, pch = 1:3) mp mp[1:2] print(mp, asWKT=TRUE, digits=3) mpdf = SpatialMultiPointsDataFrame(list(cl1, cl2, cl3), data.frame(a = 1:3)) mpdf mpdfx = rbind(mpdf, mpdf) # rbind method plot(mpdf, col = mpdf$a, cex = 1:3) as(mpdf, "data.frame") mpdf[1:2,]
cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mp = SpatialMultiPoints(list(cl1, cl2, cl3)) mpx = rbind(mp, mp) # rbind method plot(mp, col = 2, cex = 1, pch = 1:3) mp mp[1:2] print(mp, asWKT=TRUE, digits=3) mpdf = SpatialMultiPointsDataFrame(list(cl1, cl2, cl3), data.frame(a = 1:3)) mpdf mpdfx = rbind(mpdf, mpdf) # rbind method plot(mpdf, col = mpdf$a, cex = 1:3) as(mpdf, "data.frame") mpdf[1:2,]
Class for (irregularly spaced) MultiPoints
Objects can be created by calls of the form SpatialPoints(x)
.
coords
:Object of class "list"
, containing the
coordinates of point sets (each list element is a matrix)
bbox
:Object of class "matrix"
, with bounding box
proj4string
:Object of class "CRS"
, projection string
Class "Spatial"
, directly.
signature(x = "SpatialMultiPoints")
: subsets point sets
signature(from = "SpatialPoints", to = "data.frame")
:
coerce to data.frame
signature(obj = "SpatialMultiPoints")
: retrieves
all the coordinates, as one single matrix
signature(x = "SpatialPoints", y = "missing")
: plot points
signature(object = "SpatialPoints")
: summarize object
signature(x = "SpatialPoints")
: add point symbols to plot
signature(object = "SpatialPoints")
: prints coordinates
signature(object = "SpatialPoints")
: rbind-like method
The plot method for “SpatialPoints” objects takes the following arguments:
object of class SpatialPoints
default 3; either an integer specifying a symbol or a single character to be used as the default in plotting points
default FALSE; a logical value indicating whether both axes should be drawn
default FALSE; add to existing plot
default NULL; the x limits (x1, x2) of the plot
default NULL; the y limits of the plot
passed through
default FALSE; set the par
“usr” bounding box, see note in Spatial-class
default 1; numerical value giving the amount by which plotting text and symbols should be magnified relative to the default
default 1; default plotting color
default 1; line width
default 1; colour to be used for the background of the device region
Edzer Pebesma, [email protected]
SpatialMultiPointsDataFrame-class
SpatialPoints-class
cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mp = SpatialMultiPoints(list(cl1, cl2, cl3)) plot(mp, col = 2, cex = 1, pch = 1:3) mp mp[1:2] print(mp, asWKT=TRUE, digits=3)
cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mp = SpatialMultiPoints(list(cl1, cl2, cl3)) plot(mp, col = 2, cex = 1, pch = 1:3) mp mp[1:2] print(mp, asWKT=TRUE, digits=3)
Class for spatial attributes that correspond to point sets
## S4 method for signature 'SpatialMultiPointsDataFrame' x[i, j, ..., drop = TRUE] ## S4 method for signature 'SpatialMultiPointsDataFrame,data.frame' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialMultiPointsDataFrame' coordinates(obj) ## S4 method for signature 'SpatialMultiPointsDataFrame' show(object) ## S4 method for signature 'SpatialMultiPointsDataFrame' points(x)
## S4 method for signature 'SpatialMultiPointsDataFrame' x[i, j, ..., drop = TRUE] ## S4 method for signature 'SpatialMultiPointsDataFrame,data.frame' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialMultiPointsDataFrame' coordinates(obj) ## S4 method for signature 'SpatialMultiPointsDataFrame' show(object) ## S4 method for signature 'SpatialMultiPointsDataFrame' points(x)
x , from , obj , object
|
|
to |
class to which to coerce |
strict |
see |
i |
row indices |
j |
column indices |
drop |
see |
... |
indices passed through |
data
:Object of class data.frame containing the attribute data (may or may not contain the coordinates in its columns)
coords
:Object of class "list"
; the list with coordinates matrices;
points are rows in the matrix, the list length equals the number of rows in the data
slot
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection string
Class "SpatialMultiPoints"
, directly.
Class "Spatial"
, by class "SpatialMultiPoints"
.
Edzer Pebesma, [email protected]
coordinates
, SpatialMultiPoints-class
# create three sets of points: cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mpdf = SpatialMultiPointsDataFrame(list(cl1, cl2, cl3), data.frame(a = 1:3)) mpdf plot(mpdf, col = mpdf$a, cex = 1:3) as(mpdf, "data.frame") mpdf[1:2,]
# create three sets of points: cl1 = cbind(rnorm(3, 10), rnorm(3, 10)) cl2 = cbind(rnorm(5, 10), rnorm(5, 0)) cl3 = cbind(rnorm(7, 0), rnorm(7, 10)) mpdf = SpatialMultiPointsDataFrame(list(cl1, cl2, cl3), data.frame(a = 1:3)) mpdf plot(mpdf, col = mpdf$a, cex = 1:3) as(mpdf, "data.frame") mpdf[1:2,]
defines spatial grid by offset, cell size and dimensions
GridTopology(cellcentre.offset, cellsize, cells.dim) SpatialPixels(points, tolerance = sqrt(.Machine$double.eps), proj4string = CRS(as.character(NA)), round = NULL, grid = NULL) SpatialGrid(grid, proj4string = CRS(as.character(NA))) coordinatevalues(obj) points2grid(points, tolerance = sqrt(.Machine$double.eps), round=NULL) getGridIndex(cc, grid, all.inside = TRUE) getGridTopology(obj) areaSpatialGrid(obj)
GridTopology(cellcentre.offset, cellsize, cells.dim) SpatialPixels(points, tolerance = sqrt(.Machine$double.eps), proj4string = CRS(as.character(NA)), round = NULL, grid = NULL) SpatialGrid(grid, proj4string = CRS(as.character(NA))) coordinatevalues(obj) points2grid(points, tolerance = sqrt(.Machine$double.eps), round=NULL) getGridIndex(cc, grid, all.inside = TRUE) getGridTopology(obj) areaSpatialGrid(obj)
cellcentre.offset |
numeric; vector with the smallest centroid coordinates for each dimension; coordinates refer to the cell centre |
cellsize |
numeric; vector with the cell size in each dimension |
cells.dim |
integer; vector with number of cells in each dimension |
points |
coordinates, object of class SpatialPoints-class |
grid |
grid topology; object of class GridTopology-class;
for calls to |
tolerance |
precision, used to which extent points are exactly on a grid |
round |
default NULL, otherwise a value passed to as the digits argument to |
proj4string |
object of class CRS-class |
obj |
object of class or deriving from SpatialGrid-class |
cc |
numeric matrix with coordinates |
all.inside |
logical; if TRUE and |
GridTopology returns a value of class GridTopology-class; SpatialGrid returns an object of class SpatialGrid-class
coordinatevalues
returns a list with the unique x-coordinates,
the unique y-coordinate, etc. instead of the coordinates of all
grid cells
SpatialGrid returns an object of class SpatialGrid-class.
points2grid returns the GridTopology-class from a set of points.
getGridIndex finds the index of a set of point coordinates in a given
grid topology, and depending on all.inside
setting, generates NA
or an error message if points are outside the grid domain.
getGridTopology returns the slot of class GridTopology-class from obj.
areaSpatialGrid returns the spatial area of (the non-missing valued cells of) the grid. For objects of class SpatialGridDataFrame-class the area refers to cells where any (one or more) of the attribute columns are non-missing valued.
SpatialGrid stores grid topology and may or may not store the coordinates of the actual points, which may form a subset of the full grid. To find out or change this, see fullgrid.
points2grid tries to figure out the grid topology from points. It succeeds only if points on a grid line have constant y column, and points on a grid column have constant x coordinate, etc. In other cases, use signif on the raw coordinate matrices to make sure this is the case.
Edzer Pebesma, [email protected]
SpatialGrid-class, SpatialGridDataFrame-class,
x = GridTopology(c(0,0), c(1,1), c(5,4)) class(x) x summary(x) coordinates(x) coordinates(GridTopology(c(0,0), c(1,1), c(5,4))) coordinatevalues(x) data(meuse.grid) coordinates(meuse.grid) <- c("x", "y") points2grid(meuse.grid) data(meuse.grid) set.seed(1) meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), 0, 0.002) meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), 0, 0.002) coordinates(meuse.grid) <- c("x", "y") #EJP # points2grid(meuse.grid, tolerance=0.76, round=1) data(meuse.grid) a <- which(meuse.grid$x == 180140) b <- which(meuse.grid$x == 180180) c <- which(meuse.grid$x == 179260) d <- which(meuse.grid$y == 332460) e <- which(meuse.grid$y == 332420) f <- which(meuse.grid$y == 330740) meuse.grid <- meuse.grid[-c(a, b, c, d, e, f),] coordinates(meuse.grid) <- c("x", "y") points2grid(meuse.grid) data(meuse.grid) set.seed(1) meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), 0, 0.002) meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), 0, 0.002) meuse.grid <- meuse.grid[-c(a, b, c, d, e, f),] coordinates(meuse.grid) <- c("x", "y") # EJP # points2grid(meuse.grid, tolerance=0.69, round=1)
x = GridTopology(c(0,0), c(1,1), c(5,4)) class(x) x summary(x) coordinates(x) coordinates(GridTopology(c(0,0), c(1,1), c(5,4))) coordinatevalues(x) data(meuse.grid) coordinates(meuse.grid) <- c("x", "y") points2grid(meuse.grid) data(meuse.grid) set.seed(1) meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), 0, 0.002) meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), 0, 0.002) coordinates(meuse.grid) <- c("x", "y") #EJP # points2grid(meuse.grid, tolerance=0.76, round=1) data(meuse.grid) a <- which(meuse.grid$x == 180140) b <- which(meuse.grid$x == 180180) c <- which(meuse.grid$x == 179260) d <- which(meuse.grid$y == 332460) e <- which(meuse.grid$y == 332420) f <- which(meuse.grid$y == 330740) meuse.grid <- meuse.grid[-c(a, b, c, d, e, f),] coordinates(meuse.grid) <- c("x", "y") points2grid(meuse.grid) data(meuse.grid) set.seed(1) meuse.grid$x <- meuse.grid$x + rnorm(length(meuse.grid$x), 0, 0.002) meuse.grid$y <- meuse.grid$y + rnorm(length(meuse.grid$y), 0, 0.002) meuse.grid <- meuse.grid[-c(a, b, c, d, e, f),] coordinates(meuse.grid) <- c("x", "y") # EJP # points2grid(meuse.grid, tolerance=0.69, round=1)
class for defining a pixels, forming a possibly incomplete rectangular grid of arbitrary dimension
Objects are created by using e.g.
SpatialPixels(points)
with points of class SpatialPoints-class
grid
object of class GridTopology-class, defining the grid topology (offset, cellsize, dim)
grid.index
integer; index of points in full grid
coords
coordinates of points, or bbox of grid
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection
Class "SpatialPoints"
directly;
Class "Spatial"
, by class "SpatialPoints"
.
signature(x = "SpatialPixels")
: calculates coordinates for
each point on the grid; coordinates are not stored in objects of class SpatialGrid
signature(object = "SpatialPixels")
: summarize object
signature(x = "SpatialPixels")
: plots cell centers
signature(x = "SpatialPixels")
: select pixel cells; the argument
drop=FALSE
(default) does not recalculate grid topology for the selection, if
drop=TRUE
the grid topology is recomputed, and might change.
signature(x = "SpatialPixels")
: rbind-like method
Edzer Pebesma, [email protected]
SpatialPixelsDataFrame-class
, SpatialGrid-class
data(meuse.grid) pts = meuse.grid[c("x", "y")] y = SpatialPixels(SpatialPoints(pts)) class(y) y summary(y) plot(y) # plots grid plot(y, grid = FALSE) # plots points
data(meuse.grid) pts = meuse.grid[c("x", "y")] y = SpatialPixels(SpatialPoints(pts)) class(y) y summary(y) plot(y) # plots grid plot(y, grid = FALSE) # plots points
defines spatial grid by offset, cell size and dimensions
SpatialPixelsDataFrame(points, data, tolerance = sqrt(.Machine$double.eps), proj4string = CRS(as.character(NA)), round = NULL, grid = NULL) SpatialGridDataFrame(grid, data, proj4string = CRS(as.character(NA)))
SpatialPixelsDataFrame(points, data, tolerance = sqrt(.Machine$double.eps), proj4string = CRS(as.character(NA)), round = NULL, grid = NULL) SpatialGridDataFrame(grid, data, proj4string = CRS(as.character(NA)))
points |
coordinates, either as numeric matrix or as object of class SpatialPoints-class |
grid |
grid topology; object of class GridTopology-class; for
calls to |
data |
data.frame; contains the attribute (actual grid) data |
tolerance |
precision up to which extent points should be exactly on a grid |
round |
default NULL, otherwise a value passed to as the digits argument to |
proj4string |
object of class CRS-class in the first
form only used when |
SpatialPixelsDataFrame returns an object of class SpatialPixelsDataFrame-class; SpatialGridDataFrame returns an object of class SpatialGridDataFrame-class.
SpatialPixels stores grid topology and coordinates of the actual points, which may be in the form of a subset (set of pixels) of a full grid. To find out or change this, see fullgrid and SpatialGrid-class.
Edzer Pebesma
gridded, gridded<-, SpatialGrid, SpatialGrid-class
data(meuse.grid) m = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")], data = meuse.grid) class(m) summary(m)
data(meuse.grid) m = SpatialPixelsDataFrame(points = meuse.grid[c("x", "y")], data = meuse.grid) class(m) summary(m)
Class for spatial attributes that have spatial locations on a regular grid.
Objects can be created by calls of the form as(x,
"SpatialPixelsDataFrame")
, where x
is of class
SpatialPointsDataFrame-class, or by importing through rgdal.
Ordered full grids are stored instead or unordered non-NA cells;
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection
coords
:see SpatialPoints; points slot
coords.nrs
grid
:see GridTopology-class; grid parameters
grid.index
:integer; index of points in the list to points in the full (ordered) grid. x cycles fastest; all coordinates increase from low to hight except y, which decreases from high to low
data
:Object of class data.frame, containing the attribute data
Class "SpatialPixels"
, directly.
Class "Spatial"
, by class "SpatialPixels"
.
signature(x = "SpatialPixelsDataFrame")
: retrieves coordinates
signature(x = "SpatialPixelsDataFrame")
: selects row(s) and/or attribute(s), and returns an
object of class SpatialPixelsDataFrame
; rows refer here to the pixel
numbers, not grid lines. For selecting a square block in a grid, coerce to
a SpatialGridDataFrame-class first, and use [
on that object
signature(x = "SpatialPixelsDataFrame")
: coerce to matrix
signature(x = "SpatialPixelsDataFrame")
: rbind-like method
signature(x = "SpatialPixelsDataFrame", y = "missing")
: see
SpatialGridDataFrame-class for details
Edzer Pebesma, [email protected]
SpatialPixels-class
, which does not contain the attribute data
data(meuse.grid) # only the non-missing valued cells coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame meuse.grid[["idist"]] = 1 - meuse.grid[["dist"]] # assigns new attribute image(meuse.grid["idist"]) # note the single [ # toy example: df = data.frame(z = c(1:6,NA,8,9), xc = c(1,1,1,2,2,2,3,3,3), yc = c(rep(c(0, 1.5, 3),3))) coordinates(df) = ~xc+yc gridded(df) = TRUE image(df["z"]) # draw labels to verify: cc = coordinates(df) z=df[["z"]] zc=as.character(z) zc[is.na(zc)]="NA" text(cc[,1],cc[,2],zc)
data(meuse.grid) # only the non-missing valued cells coordinates(meuse.grid) = c("x", "y") # promote to SpatialPointsDataFrame gridded(meuse.grid) <- TRUE # promote to SpatialPixelsDataFrame meuse.grid[["idist"]] = 1 - meuse.grid[["dist"]] # assigns new attribute image(meuse.grid["idist"]) # note the single [ # toy example: df = data.frame(z = c(1:6,NA,8,9), xc = c(1,1,1,2,2,2,3,3,3), yc = c(rep(c(0, 1.5, 3),3))) coordinates(df) = ~xc+yc gridded(df) = TRUE image(df["z"]) # draw labels to verify: cc = coordinates(df) z=df[["z"]] zc=as.character(z) zc[is.na(zc)]="NA" text(cc[,1],cc[,2],zc)
create objects of class SpatialPoints-class or
SpatialPointsDataFrame-class from
coordinates, and from coordinates and data.frame
s
SpatialPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL) SpatialPointsDataFrame(coords, data, coords.nrs = numeric(0), proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)
SpatialPoints(coords, proj4string=CRS(as.character(NA)), bbox = NULL) SpatialPointsDataFrame(coords, data, coords.nrs = numeric(0), proj4string = CRS(as.character(NA)), match.ID, bbox = NULL)
coords |
numeric matrix or data.frame with coordinates (each row is a point); in case of SpatialPointsDataFrame an object of class SpatialPoints-class is also allowed |
proj4string |
projection string of class CRS-class |
bbox |
bounding box matrix, usually NULL and constructed from the data, but may be passed through for coercion purposes if clearly needed |
data |
object of class |
coords.nrs |
numeric; if present, records the column positions where
in |
match.ID |
logical or character; if missing, and |
SpatialPoints
returns an object of class SpatialPoints
;
SpatialPointsDataFrame
returns an object of class SpatialPointsDataFrame
;
coordinates, SpatialPoints-class, SpatialPointsDataFrame-class
set.seed(1331) pts = cbind(1:5, 1:5) dimnames(pts)[[1]] = letters[1:5] df = data.frame(a = 1:5) row.names(df) = letters[5:1] library(sp) options(warn=1) # show warnings where they occur SpatialPointsDataFrame(pts, df) # warn SpatialPointsDataFrame(pts, df, match.ID = TRUE) # don't warn SpatialPointsDataFrame(pts, df, match.ID = FALSE) # don't warn df$m = letters[5:1] SpatialPointsDataFrame(pts, df, match.ID = "m") # don't warn dimnames(pts)[[1]] = letters[5:1] SpatialPointsDataFrame(pts, df) # don't warn: ID matching doesn't reorder
set.seed(1331) pts = cbind(1:5, 1:5) dimnames(pts)[[1]] = letters[1:5] df = data.frame(a = 1:5) row.names(df) = letters[5:1] library(sp) options(warn=1) # show warnings where they occur SpatialPointsDataFrame(pts, df) # warn SpatialPointsDataFrame(pts, df, match.ID = TRUE) # don't warn SpatialPointsDataFrame(pts, df, match.ID = FALSE) # don't warn df$m = letters[5:1] SpatialPointsDataFrame(pts, df, match.ID = "m") # don't warn dimnames(pts)[[1]] = letters[5:1] SpatialPointsDataFrame(pts, df) # don't warn: ID matching doesn't reorder
Class for (irregularly spaced) points
Objects can be created by calls of the form SpatialPoints(x)
.
coords
:Object of class "matrix"
, containing the
coordinates (each row is a point)
bbox
:Object of class "matrix"
, with bounding box
proj4string
:Object of class "CRS"
, projection string
Class "Spatial"
, directly.
signature(x = "SpatialPoints")
: subsets the points; only
rows (points) can be subsetted
signature(from = "SpatialPoints", to = "data.frame")
:
retrieves the data part
signature(from = "SpatialPoints", to = "SpatialPixels")
: equivalent to assigning gridded TRUE for a copy of the object
signature(from = "SpatialPointsDataFrame", to = "SpatialPixelsDataFrame")
: equivalent to assigning gridded TRUE for a copy of the object
signature(from = "data.frame", to = "SpatialPoints")
: sets
coordinates, which may be in a data frame
signature(from = "matrix", to = "SpatialPoints")
: set
coordinates, which may be in a matrix
signature(obj = "SpatialPoints")
: retrieves
the coordinates, as matrix
signature(x = "SpatialPoints", y = "missing")
: plot points
signature(object = "SpatialPoints")
: summarize object
signature(x = "SpatialPoints")
: add point symbols to plot
signature(object = "SpatialPoints")
: prints coordinates
signature(object = "SpatialPoints")
: rbind-like method
The plot method for “SpatialPoints” objects takes the following arguments:
object of class SpatialPoints
default 3; either an integer specifying a symbol or a single character to be used as the default in plotting points
default FALSE; a logical value indicating whether both axes should be drawn
default FALSE; add to existing plot
default NULL; the x limits (x1, x2) of the plot
default NULL; the y limits of the plot
passed through
default FALSE; set the par
“usr” bounding box, see note in Spatial-class
default 1; numerical value giving the amount by which plotting text and symbols should be magnified relative to the default
default 1; default plotting color
default 1; line width
default 1; colour to be used for the background of the device region
Edzer Pebesma, [email protected]
x = c(1,2,3,4,5) y = c(3,2,5,1,4) S <- SpatialPoints(cbind(x,y)) S <- SpatialPoints(list(x,y)) S <- SpatialPoints(data.frame(x,y)) S plot(S)
x = c(1,2,3,4,5) y = c(3,2,5,1,4) S <- SpatialPoints(cbind(x,y)) S <- SpatialPoints(list(x,y)) S <- SpatialPoints(data.frame(x,y)) S plot(S)
Class for spatial attributes that have spatial point locations
## S4 method for signature 'SpatialPointsDataFrame' x[i, j, ..., drop = TRUE] ## S4 method for signature 'SpatialPointsDataFrame,SpatialPoints' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialPointsDataFrame,data.frame' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialPointsDataFrame' coordinates(obj) ## S4 method for signature 'SpatialPointsDataFrame' show(object) ## S4 method for signature 'SpatialPointsDataFrame' points(x) ## S3 method for class 'SpatialPointsDataFrame' rbind(...)
## S4 method for signature 'SpatialPointsDataFrame' x[i, j, ..., drop = TRUE] ## S4 method for signature 'SpatialPointsDataFrame,SpatialPoints' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialPointsDataFrame,data.frame' coerce(from, to, strict=TRUE) ## S4 method for signature 'SpatialPointsDataFrame' coordinates(obj) ## S4 method for signature 'SpatialPointsDataFrame' show(object) ## S4 method for signature 'SpatialPointsDataFrame' points(x) ## S3 method for class 'SpatialPointsDataFrame' rbind(...)
x , from , obj , object
|
|
to |
class to which to coerce |
strict |
see |
i |
row indices |
j |
column indices |
drop |
see |
... |
indices passed through |
Objects can be created by calls of the form coordinates(x) = c("x", "y")
.
or of the form coordinates(x) = xy
; see coordinates.
data
:Object of class data.frame containing the attribute data (may or may not contain the coordinates in its columns)
coords
:Object of class "matrix"
; the coordinates matrix
(points are rows in the matrix)
coords.nrs
Object of class logical; if TRUE, when the object was created the coordinates were retrieved from the data.frame, and hence stripped from it; after coercion to data.frame, e.g. by as.data.frame(x), coordinates will again be added (as first few columns) to the data.frame
bbox
:Object of class "matrix"
; bounding box
proj4string
:Object of class "CRS"
; projection string
Class "SpatialPoints"
, directly.
Class "Spatial"
, by class "SpatialPoints"
.
Edzer Pebesma, [email protected]
coordinates
, SpatialPoints-class
data(meuse) xy = meuse[c("x", "y")] # retrieve coordinates as data.frame class(meuse) data(meuse) # reload data.frame coordinates(meuse) = c("x", "y") # specify column names class(meuse) data(meuse) # reload data.frame coordinates(meuse) = c(1, 2) # specify column names class(meuse) data(meuse) # reload data.frame coordinates(meuse) = ~x+y # formula class(meuse) data(meuse) # reload data.frame coordinates(meuse) = xy # as data frame class(meuse) data(meuse) # reload data.frame coordinates(meuse) = as.matrix(xy) # as matrix meuse$log.zn = log(meuse$zinc) class(meuse) dim(meuse)
data(meuse) xy = meuse[c("x", "y")] # retrieve coordinates as data.frame class(meuse) data(meuse) # reload data.frame coordinates(meuse) = c("x", "y") # specify column names class(meuse) data(meuse) # reload data.frame coordinates(meuse) = c(1, 2) # specify column names class(meuse) data(meuse) # reload data.frame coordinates(meuse) = ~x+y # formula class(meuse) data(meuse) # reload data.frame coordinates(meuse) = xy # as data frame class(meuse) data(meuse) # reload data.frame coordinates(meuse) = as.matrix(xy) # as matrix meuse$log.zn = log(meuse$zinc) class(meuse) dim(meuse)
create objects of class SpatialPolygons
or SpatialPolygonsDataFrame
from
lists of Polygons
objects and data.frame
s
Polygon(coords, hole=as.logical(NA)) Polygons(srl, ID) SpatialPolygons(Srl, pO, proj4string=CRS(as.character(NA))) SpatialPolygonsDataFrame(Sr, data, match.ID = TRUE) getSpatialPolygonsLabelPoints(SP)
Polygon(coords, hole=as.logical(NA)) Polygons(srl, ID) SpatialPolygons(Srl, pO, proj4string=CRS(as.character(NA))) SpatialPolygonsDataFrame(Sr, data, match.ID = TRUE) getSpatialPolygonsLabelPoints(SP)
coords |
2-column numeric matrix with coordinates; first point (row) should equal last coordinates (row); if the hole argument is not given, the status of the polygon as a hole or an island will be taken from the ring direction, with clockwise meaning island, and counter-clockwise meaning hole |
hole |
logical value for setting polygon as hole or not; if the hole argument is not given, the status of the polygon as a hole or an island will be taken from the ring direction, with clockwise meaning island, and counter-clockwise meaning hole |
proj4string |
projection string of class CRS-class |
srl |
list with Polygon-class objects |
ID |
character vector of length one with identifier |
Srl |
list with objects of class Polygons-class |
pO |
integer vector; plotting order; if missing in reverse order of Polygons area |
Sr |
object of class SpatialPolygons-class |
data |
object of class |
match.ID |
logical: (default TRUE): match SpatialPolygons
member Polygons ID slot values with data frame row names, and
re-order the data frame rows if necessary. If character: indicates
the column in |
SP |
object of class SpatialPolygons-class |
In Polygon
, if the hole argument is not given, the status of the polygon as a hole or an island will be taken from the ring direction, with clockwise meaning island, and counter-clockwise meaning hole. In Polygons
, if all of the member Polygon objects are holes, the largest by area will be converted to island status. Until 2010-04-17, version 0.9-61, the area of this converted object was erroneously left at its hole value of zero. Thanks to Patrick Giraudoux for spotting the bug.
The class definitions used for polygons in sp do not accord with those of
the simple features specification of the Open Geospatial Consortium. The rgeos package, an interface to Geometry Engine – Open Source (GEOS), uses this
specification, in which each hole (interior ring) must be associated with
its containing exterior ring. In order to avoid introducing incompatible
changes into the class definition of Polygons objects, a comment has been
added as a single character string to each such object. Here we can trust
the data source to assign the hole status correctly, and use round-trip coercion to sf
to add such comments to each Polygons member of
the polygons slot of this SpatialPolygons object. Exterior rings are coded
zero, while interior rings are coded with the 1-based index of the
exterior ring to which they belong. SpatialPolygons objects created by reading using sf
have the comments set on input, as OGR also uses SFS.
Refer to Bivand et al. (2013), pages 47-48 and 132-133 for a further discussion.
Polygon
returns an object of class Polygon
;
Polygons
returns an object of class Polygons
;
SpatialPolygons
returns object of class SpatialPolygons
;
SpatialPolygonsDataFrame
returns object of class SpatialPolygonsDataFrame
getSpatialPolygonsLabelPoints
returns an object of class
SpatialPoints
with label points.
Roger Bivand, Edzer Pebesma and Virgilio Gomez-Rubio, 2013. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/
SpatialPolygons-class, SpatialPolygonsDataFrame-class
class to hold polygon topology (without attributes)
Objects can be created by calls to the function SpatialPolygons
polygons
:Object of class "list"
; list elements are
all of class Polygons-class
plotOrder
:Object of class "integer"
; integer array
giving the order in which objects should be plotted
bbox
:Object of class "matrix"
; see Spatial-class
proj4string
:Object of class "CRS"
; see CRS-class
Class "Spatial"
, directly.
Methods defined with class "SpatialPolygons" in the signature:
signature(obj = "SpatialPolygons")
: select subset of (sets of) polygons; NAs are not permitted in the row index
signature(x = "SpatialPolygons", y = "missing")
:
plot polygons in SpatialPolygons object
signature(object = "SpatialPolygons")
: summarize object
signature(object = "SpatialPolygons")
: rbind-like method
The plot
method for spatial polygons takes the following arguments:
a SpatialPolygons object
a vector of colour values
default par("fg")
; the colour to draw the border
default FALSE; if TRUE, add to existing plot
default NULL; ranges for the plotted ‘x’ and ‘y’ values
default NULL; controls clipping, see par
default NULL; the density of shading lines, in lines per inch, see polygon
default 45; the slope of shading lines, given as an angle in degrees (counter-clockwise), see polygon
default NULL, set to par("bg")
by default “transparent”; the colour to paint holes
default FALSE; draw axes
default par("lty")
; border line type
other arguments passed through
default FALSE; see Spatial-class
for further details
default NULL to set from option value; use polypath
for hole-handling in plot
default NULL to set from option value; character value specifying the path fill mode, see polypath
The options for usePolypath
and rule
may be retrieved with get_Polypath
(default TRUE on package load) and get_PolypathRule
(default “winding” on package load), and set with set_Polypath
and set_PolypathRule
The class definitions used for polygons in sp do not accord with those of
the simple features specification of the Open Geospatial Consortium. The rgeos package, an interface to Geometry Engine – Open Source (GEOS), uses this
specification, in which each hole (interior ring) must be associated with
its containing exterior ring. In order to avoid introducing incompatible
changes into the class definition of Polygons objects, a comment has been
added as a single character string to each such object. Here we can trust
the data source to assign the hole status correctly, and use round-trip coercion to sf
to add such comments to each Polygons member of
the polygons slot of this SpatialPolygons object. Exterior rings are coded
zero, while interior rings are coded with the 1-based index of the
exterior ring to which they belong. SpatialPolygons objects created by reading using sf
or terra
have the comments set on input, as OGR also uses SFS.
Refer to Bivand et al. (2013), pages 47-48 and 132-133 for a further discussion.
rbind
calls the function SpatialPolygons
, where it is
checked that all IDs are unique. If rbind
-ing SpatialPolygons
without
unique IDs, it is possible to set the argument makeUniqueIDs = TRUE
, although
it is preferred to change these explicitly with spChFIDs
.
Roger Bivand
Roger Bivand, Edzer Pebesma and Virgilio Gomez-Rubio, 2013. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/
# simple example, from vignette("sp"): Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2))) Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2))) Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5))) Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s3/4") SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3) plot(SpP, col = 1:3, pbg="white") grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as(grd, "SpatialPolygons") plot(polys) text(coordinates(polys), labels=row.names(polys))
# simple example, from vignette("sp"): Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2))) Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2))) Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5))) Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s3/4") SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3) plot(SpP, col = 1:3, pbg="white") grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as(grd, "SpatialPolygons") plot(polys) text(coordinates(polys), labels=row.names(polys))
class to hold polygons with attributes
Objects can be created by calls to the function SpatialPolygonsDataFrame
data
:Object of class "data.frame"
; attribute table
polygons
:Object of class "list"
; see SpatialPolygons-class
plotOrder
:Object of class "integer"
; see SpatialPolygons-class
bbox
:Object of class "matrix"
; see Spatial-class
proj4string
:Object of class "CRS"
; see CRS-class
Class "SpatialPolygons"
, directly.
Class "Spatial"
, by class "SpatialPolygons"
.
Methods defined with class "SpatialPolygonsDataFrame" in the signature:
signature(x = "SpatialPolygonsDataFrame")
: select subset of (sets of) polygons; NAs are not permitted in the row index
signature(object = "SpatialPolygonsDataFrame")
:
rbind-like method, see notes below
SpatialPolygonsDataFrame
with default ID matching checks the data frame row names against the Polygons ID slots. They must then agree with each other, and be unique (no Polygons objects can share IDs); the data frame rows will be re-ordered if needed to match the Polygons IDs..
If you want to rbind
objects with
duplicated IDs, seespChFIDs
.
Roger Bivand
# simple example, from scratch: Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2))) Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2))) Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5))) Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s3/4") SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3) plot(SpP, col = 1:3, pbg="white") grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as(grd, "SpatialPolygons") centroids <- coordinates(polys) x <- centroids[,1] y <- centroids[,2] z <- 1.4 + 0.1*x + 0.2*y + 0.002*x*x ex_1.7 <- SpatialPolygonsDataFrame(polys, data=data.frame(x=x, y=y, z=z, row.names=row.names(polys))) brks <- quantile(z, seq(0,1,1/7)) cols <- grey((length(brks):2)/length(brks)) dens <- (2:length(brks))*3 plot(ex_1.7, col=cols[findInterval(z, brks, all.inside=TRUE)]) plot(ex_1.7, density=dens[findInterval(z, brks, all.inside=TRUE)])
# simple example, from scratch: Sr1 = Polygon(cbind(c(2,4,4,1,2),c(2,3,5,4,2))) Sr2 = Polygon(cbind(c(5,4,2,5),c(2,3,2,2))) Sr3 = Polygon(cbind(c(4,4,5,10,4),c(5,3,2,5,5))) Sr4 = Polygon(cbind(c(5,6,6,5,5),c(4,4,3,3,4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s3/4") SpP = SpatialPolygons(list(Srs1,Srs2,Srs3), 1:3) plot(SpP, col = 1:3, pbg="white") grd <- GridTopology(c(1,1), c(1,1), c(10,10)) polys <- as(grd, "SpatialPolygons") centroids <- coordinates(polys) x <- centroids[,1] y <- centroids[,2] z <- 1.4 + 0.1*x + 0.2*y + 0.002*x*x ex_1.7 <- SpatialPolygonsDataFrame(polys, data=data.frame(x=x, y=y, z=z, row.names=row.names(polys))) brks <- quantile(z, seq(0,1,1/7)) cols <- grey((length(brks):2)/length(brks)) dens <- (2:length(brks))*3 plot(ex_1.7, col=cols[findInterval(z, brks, all.inside=TRUE)]) plot(ex_1.7, density=dens[findInterval(z, brks, all.inside=TRUE)])
When the feature IDs need to be changed in SpatialLines* or SpatialPolygons* objects, these methods may be used. The new IDs should be a character vector of unique IDs of the correct length.
replace IDs in a SpatialLines object
replace IDs in a SpatialLinesDataFrame object
replace IDs in a SpatialPolygons object
replace IDs in a SpatialPolygonsDataFrame object
It is usually sensible to keep a copy of the original feature IDs in the object, but this should be done by the user.
Roger Bivand
## Not run: if(require(sf)) { xx <- as(st_read(system.file("shape/nc.shp", package="sf")[1]), "Spatial") row.names(xx) <- as.character(xx$"FIPSNO") row.names(as(xx, "data.frame")) xx1 <- spChFIDs(xx, as.character(xx$CNTY_ID)) row.names(as(xx1, "data.frame")) } ## End(Not run)
## Not run: if(require(sf)) { xx <- as(st_read(system.file("shape/nc.shp", package="sf")[1]), "Spatial") row.names(xx) <- as.character(xx$"FIPSNO") row.names(as(xx, "data.frame")) xx1 <- spChFIDs(xx, as.character(xx$CNTY_ID)) row.names(as(xx1, "data.frame")) } ## End(Not run)
The function returns a vector of distances between a matrix of 2D points, first column longitude, second column latitude, and a single 2D point, using Euclidean or Great Circle distance (WGS84 ellipsoid) methods.
spDistsN1(pts, pt, longlat = FALSE) spDists(x, y = x, longlat = FALSE, segments = FALSE, diagonal = FALSE)
spDistsN1(pts, pt, longlat = FALSE) spDists(x, y = x, longlat = FALSE, segments = FALSE, diagonal = FALSE)
pts |
A matrix of 2D points, first column x/longitude, second column y/latitude, or a SpatialPoints or SpatialPointsDataFrame object |
pt |
A single 2D point, first value x/longitude, second value y/latitude, or a SpatialPoints or SpatialPointsDataFrame object with one point only |
x |
A matrix of n-D points with row denoting points, first column x/longitude, second column y/latitude, or a Spatial object that has a coordinates method |
y |
A matrix of n-D points with row denoting points, first column x/longitude, second column y/latitude, or a Spatial object that has a coordinates method |
longlat |
logical;
if FALSE, Euclidean distance,
if TRUE Great Circle (WGS84 ellipsoid) distance;
if |
segments |
logical; if |
diagonal |
logical; if |
spDistsN1
returns a numeric vector of distances in the metric of the points if longlat=FALSE, or in kilometers if longlat=TRUE.
spDists
returns a full matrix of distances in the metric of the points if longlat=FALSE, or in kilometers if longlat=TRUE; it uses spDistsN1
in case points are two-dimensional. In case of spDists(x,x)
, it will compute
all n x n distances, not the sufficient n x (n-1).
The function can also be used to find a local kilometer equivalent to a plot scaled in decimal degrees in order to draw a scale bar.
Roger Bivand, Edzer Pebesma
http://www.abecedarical.com/javascript/script_greatcircle.html
ll <- matrix(c(5, 6, 60, 60), ncol=2) km <- spDistsN1(ll, ll[1,], longlat=TRUE) zapsmall(km) utm32 <- matrix(c(276.9799, 332.7052, 6658.1572, 6655.2055), ncol=2) spDistsN1(utm32, utm32[1,]) dg <- spDistsN1(ll, ll[1,]) dg dg[2]/km[2] data(meuse) coordinates(meuse) <- c("x", "y") res <- spDistsN1(meuse, meuse[1,]) summary(res) p1 = SpatialPoints(cbind(1:3, 1:3)) spDists(p1) spDists(p1, p1) spDists(p1, p1, diagonal = TRUE) try(spDists(p1, p1, segments = TRUE)) spDists(p1, segments = TRUE) p2 = SpatialPoints(cbind(5:2, 2:5)) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails try(spDists(p1, p2, segments = TRUE)) # fails # longlat points: proj4string(p1) = "+proj=longlat +ellps=WGS84" proj4string(p2) = "+proj=longlat +ellps=WGS84" is.projected(p1) is.projected(p2) spDists(p1) spDists(p1, p1) spDists(p1, p1, diagonal = TRUE) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails spDists(p1, p2[1:length(p1),], diagonal = TRUE) spDists(p1, segments = TRUE) spDists(p1[0],p2[0],diagonal=TRUE) spDists(p1[0]) p1 = SpatialPoints(cbind(1:3, 1:3, 1:3)) spDists(p1) spDists(p1, p1) try(spDists(p1, p1, diagonal = TRUE)) try(spDists(p1, p1, segments = TRUE)) try(spDists(p1, segments = TRUE)) p2 = SpatialPoints(cbind(5:2, 2:5, 3:6)) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails try(spDists(p1, p2, segments = TRUE)) # fails
ll <- matrix(c(5, 6, 60, 60), ncol=2) km <- spDistsN1(ll, ll[1,], longlat=TRUE) zapsmall(km) utm32 <- matrix(c(276.9799, 332.7052, 6658.1572, 6655.2055), ncol=2) spDistsN1(utm32, utm32[1,]) dg <- spDistsN1(ll, ll[1,]) dg dg[2]/km[2] data(meuse) coordinates(meuse) <- c("x", "y") res <- spDistsN1(meuse, meuse[1,]) summary(res) p1 = SpatialPoints(cbind(1:3, 1:3)) spDists(p1) spDists(p1, p1) spDists(p1, p1, diagonal = TRUE) try(spDists(p1, p1, segments = TRUE)) spDists(p1, segments = TRUE) p2 = SpatialPoints(cbind(5:2, 2:5)) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails try(spDists(p1, p2, segments = TRUE)) # fails # longlat points: proj4string(p1) = "+proj=longlat +ellps=WGS84" proj4string(p2) = "+proj=longlat +ellps=WGS84" is.projected(p1) is.projected(p2) spDists(p1) spDists(p1, p1) spDists(p1, p1, diagonal = TRUE) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails spDists(p1, p2[1:length(p1),], diagonal = TRUE) spDists(p1, segments = TRUE) spDists(p1[0],p2[0],diagonal=TRUE) spDists(p1[0]) p1 = SpatialPoints(cbind(1:3, 1:3, 1:3)) spDists(p1) spDists(p1, p1) try(spDists(p1, p1, diagonal = TRUE)) try(spDists(p1, p1, segments = TRUE)) try(spDists(p1, segments = TRUE)) p2 = SpatialPoints(cbind(5:2, 2:5, 3:6)) spDists(p1, p2) try(spDists(p1, p2, diagonal = TRUE)) # fails try(spDists(p1, p2, segments = TRUE)) # fails
Lattice (trellis) plot methods for spatial data with attributes
spplot(obj, ...) spplot.grid(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.gridplot, sp.layout = NULL, formula, xlim = bbox(obj)[1, ], ylim = bbox(obj)[2, ], checkEmptyRC = TRUE, col.regions = get_col_regions()) spplot.polygons(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.polygonsplot, sp.layout = NULL, formula, xlim = bbox(obj)[1, ], ylim = bbox(obj)[2, ], col.regions = get_col_regions()) spplot.points(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.pointsplot, sp.layout = NULL, identify = FALSE, formula, xlim = bbexpand(bbox(obj)[1, ], 0.04), ylim = bbexpand(bbox(obj)[2, ], 0.04), edge.col = "transparent", colorkey = FALSE, col.regions = get_col_regions()) mapLegendGrob(obj, widths = unit(1, "cm"), heights = unit(1, "cm"), fill = "black", just = "right") sp.theme(set = FALSE, regions = list(col = bpy.colors(100)), ...) layout.north.arrow(type = 1) layout.scale.bar(height = 0.05) spplot.locator(n = 512, type = "n", ...) set_col_regions(value) get_col_regions()
spplot(obj, ...) spplot.grid(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.gridplot, sp.layout = NULL, formula, xlim = bbox(obj)[1, ], ylim = bbox(obj)[2, ], checkEmptyRC = TRUE, col.regions = get_col_regions()) spplot.polygons(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.polygonsplot, sp.layout = NULL, formula, xlim = bbox(obj)[1, ], ylim = bbox(obj)[2, ], col.regions = get_col_regions()) spplot.points(obj, zcol = names(obj), ..., names.attr, scales = list(draw = FALSE), xlab = NULL, ylab = NULL, aspect = mapasp(obj,xlim,ylim), panel = panel.pointsplot, sp.layout = NULL, identify = FALSE, formula, xlim = bbexpand(bbox(obj)[1, ], 0.04), ylim = bbexpand(bbox(obj)[2, ], 0.04), edge.col = "transparent", colorkey = FALSE, col.regions = get_col_regions()) mapLegendGrob(obj, widths = unit(1, "cm"), heights = unit(1, "cm"), fill = "black", just = "right") sp.theme(set = FALSE, regions = list(col = bpy.colors(100)), ...) layout.north.arrow(type = 1) layout.scale.bar(height = 0.05) spplot.locator(n = 512, type = "n", ...) set_col_regions(value) get_col_regions()
obj |
object of class extending Spatial-class |
zcol |
character; attribute name(s) or column number(s) in attribute table |
names.attr |
names to use in panel, if different from zcol names |
scales |
scales argument to be passed to Lattice plots; use
|
... |
other arguments passed to levelplot (grids, polygons) or xyplot (points) |
xlab |
label for x-axis |
ylab |
label for y-axis |
aspect |
aspect ratio for spatial axes; defaults to "iso" (one unit on the x-axis equals one unit on the y-axis) but may be set to more suitable values if the data are e.g. if coordinates are latitude/longitude |
panel |
depending on the class of obj, panel.polygonsplot (for
polygons or lines), panel.gridplot (grids) or panel.pointsplot
(points) is used; for further control custom panel functions can be
supplied that call one of these panel functions, but do read below how the
argument |
sp.layout |
NULL or list; see notes below |
identify |
if not FALSE, identify plotted objects (currently only working
for points plots). Labels for identification are the row.names of the
attribute table |
formula |
optional; may be useful to plot a transformed value. Defaults
to |
xlim |
numeric; x-axis limits |
ylim |
numeric; y-axis limits |
edge.col |
color of symbol edge |
colorkey |
if FALSE, use symbol key; if TRUE, use continuous, levelplot-like colorkey; if list, follow syntax of argument |
widths |
width of grob |
heights |
heights of grob |
fill |
fill color of grob |
just |
grob placement justification |
set |
logical; if TRUE, trellis.par.set is called, else a list is returned that can be passed to trellis.par.set() |
regions |
color ramp for the theme |
height |
height of scale bar; width is 1.0 |
n |
see locator |
type |
see locator |
checkEmptyRC |
logical; if TRUE, a check is done to see if empty rows or columns are present, and need to be taken care of. Setting to FALSE may improve speed. |
col.regions |
vector with fill colours; in case the variable to be plotted is a factor, this vector should have length equal to the number of factor levels |
value |
vector with color values, default for |
spplot returns a lattice plot of class "trellis", if you fail to "see" it,
explicitly call print(spplot(...))
. If identify
is TRUE,
the plot is plotted and the return value is a vector with row names of
the selected points.
spplot.locator
returns a matrix with identified point locations;
use trellis.focus
first to focus on a given panel.
get_col_regions
returns the default value for col.regions
see spplot
see spplot
see spplot
see spplot
see spplot
Missing values in the attributes are (currently) not allowed.
spplot.grid
, spplot.polygons
and spplot.points
are S4
methods for spplot
; see spplot-methods.
Useful arguments that can be passed as ...
are:
layout
integer; for the layout of panels (cols,rows)
pretty
logical; choose colour breaks at pretty numbers?
at
specify at which values colours change
as.table
logical; start drawing panels upper-left instead of lower-left
page
to add marks to each plotted page
for useful values see the appropriate documentation of xyplot (in case of points), and levelplot (otherwise).
If obj
is of SpatialPointsDataFrame, the following options are
useful to pass:
key.space
character: "bottom", "right", "left" or "right" to denote key location, or list: see argument key in the help for xyplot what the options are
legendEntries
character; array with key legend (text) entries; suitable defaults obtained from data
cuts
number of cuts, or, for objects of class SpatialPointsDataFrame only, the actual cuts to use
do.log
logical; if TRUE use log-linear scale to divide range in equal cuts,
else use a linear scale if cuts
is only number of cuts
pch
integer; plotting character to use; defaults to 16 if fill is TRUE, else 1
cex
numeric; character expansion, proportional to default value of 1
fill
logical; use filled circles?
layout.north.arrow
and layout.scale.bar
can be used
to set a north arrow or scale bar.
The sp.layout
argument is either a single layout item, or a list
with one or more layout items. A layout item is one of
a list with one or more Spatial*
objects, along with
style arguments like col
, lty
, pch
, fill
etc.
a list with its first argument the layout function or
the name of the layout function to be called: sp.points
for
SpatialPoints, sp.polygons
for SpatialPolygons object, sp.lines
for a SpatialLines object, and sp.text
for text to place. The
second argument contains the object (or text) to be plotted; remaining
arguments are passed to the corresponding panel.*
functions.
The order of items in sp.layout
matters; objects are drawn in the
order they appear. With respect to obj
, default plot order and
precedence of sp.layout
items is as follows: for points and
lines, sp.layout
items are drawn over (after) obj
; for
grids and polygons, sp.layout
items are drawn behind (before)
obj
. Transparency may further help making multiple things
visible. Adding a first
argument to a layout item overrides its
default plotting order with respect to obj
:
Special control elements of sp.layout
items:
first
logical; should the layout item be drawn before
the obj
(TRUE), or after (FALSE)? This overrides
the default order (points and lines in front, polygons and grids behind).
which
integer; controls to which panel a layout
item should be added. If which
is present in the main,
top-level list it applies to all layout items; in sub-lists with
layout items it denotes the (set of) panel(s) in which the layout
item should be drawn. Without a which
item, layout items
are drawn in each panel.
sp.theme
returns a lattice theme; use, after loading package
lattice
, the command trellis.par.set(sp.theme())
after a device is opened or changed to make this work. Currently, this only
sets the colors to bpy.colors.
If the attributes to be plotted are of type factor, spplot tries to create a legend that reflects this. In this case, the color ramp passed needs to be of the same length as the number of factor levels. The factor levels are derived from the first map; subsequent factors with different factor levels result in an error.
Edzer Pebesma, [email protected]
xyplot, levelplot, panel.identify to identify objects
library(lattice) trellis.par.set(sp.theme()) # sets bpy.colors() ramp demo(meuse, ask = FALSE, echo = FALSE) l2 = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(181300,329800), scale = 400) l3 = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(180500,329800), scale = 500, fill=c("transparent","black")) l4 = list("sp.text", c(180500,329900), "0") l5 = list("sp.text", c(181000,329900), "500 m") spplot(meuse, c("ffreq"), sp.layout=list(l2,l3,l4,l5), col.regions= "black", pch=c(1,2,3), key.space=list(x=0.1,y=.95,corner=c(0,1))) spplot(meuse, c("zinc", "lead"), sp.layout=list(l2,l3,l4,l5, which = 2), key.space=list(x=0.1,y=.95,corner=c(0,1))) # plotting factors: meuse$f = factor(sample(letters[6:10], 155, replace=TRUE),levels=letters[1:10]) meuse$g = factor(sample(letters[1:5], 155, replace=TRUE),levels=letters[1:10]) spplot(meuse, c("f","g"), col.regions=bpy.colors(10)) if (require(RColorBrewer)) { spplot(meuse, c("ffreq"), sp.layout=list(l2,l3,l4,l5), col.regions=brewer.pal(3, "Set1")) } meuse.grid$g = factor(sample(letters[1:5], 3103, replace=TRUE), levels=letters[1:10]) meuse.grid$f = factor(sample(letters[6:10], 3103, replace=TRUE), levels=letters[1:10]) spplot(meuse.grid, c("f","g"), col.regions=bpy.colors(10)) # example modifying colorkey for points: spplot(meuse["dist"], colorkey = list( right = list( # see ?levelplot in package trellis, argument colorkey: fun = draw.colorkey, args = list( key = list( at = seq(0, 1, .1), # colour breaks col = bpy.colors(11), # colours labels = list( at = c(0, .2, .4, .6, .8, 1), labels = c("0x", "20x", "40x", "60x", "80x", "100x") ) ) ) ) )) l6 = list(meuse.grid["dist"], col = grey(seq(.5,.9,length.out=10))) spplot(meuse, c("zinc", "lead"), sp.layout = l6) spplot(meuse, c("zinc", "lead"), sp.layout = list(meuse.grid, meuse.riv, col = 'grey')) # Custom legend placement, taken from # http://stackoverflow.com/questions/29344692/custom-placement-of-spplot-legend-in-the-map s <- spplot(meuse.grid[,'dist'], colorkey = list(space = "left", height = 0.4)) args <- s$legend$left$args$key ## Prepare list of arguments needed by `legend=` argument (as described in ?xyplot) library(lattice) # draw.colorkey legendArgs <- list(fun = draw.colorkey, args = list(key = args), corner = c(0.05,.75)) ## Call spplot() again, this time passing in to legend the arguments ## needed to print a color key spplot(meuse.grid[,'dist'], colorkey = FALSE, legend = list(inside = legendArgs))
library(lattice) trellis.par.set(sp.theme()) # sets bpy.colors() ramp demo(meuse, ask = FALSE, echo = FALSE) l2 = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(181300,329800), scale = 400) l3 = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(180500,329800), scale = 500, fill=c("transparent","black")) l4 = list("sp.text", c(180500,329900), "0") l5 = list("sp.text", c(181000,329900), "500 m") spplot(meuse, c("ffreq"), sp.layout=list(l2,l3,l4,l5), col.regions= "black", pch=c(1,2,3), key.space=list(x=0.1,y=.95,corner=c(0,1))) spplot(meuse, c("zinc", "lead"), sp.layout=list(l2,l3,l4,l5, which = 2), key.space=list(x=0.1,y=.95,corner=c(0,1))) # plotting factors: meuse$f = factor(sample(letters[6:10], 155, replace=TRUE),levels=letters[1:10]) meuse$g = factor(sample(letters[1:5], 155, replace=TRUE),levels=letters[1:10]) spplot(meuse, c("f","g"), col.regions=bpy.colors(10)) if (require(RColorBrewer)) { spplot(meuse, c("ffreq"), sp.layout=list(l2,l3,l4,l5), col.regions=brewer.pal(3, "Set1")) } meuse.grid$g = factor(sample(letters[1:5], 3103, replace=TRUE), levels=letters[1:10]) meuse.grid$f = factor(sample(letters[6:10], 3103, replace=TRUE), levels=letters[1:10]) spplot(meuse.grid, c("f","g"), col.regions=bpy.colors(10)) # example modifying colorkey for points: spplot(meuse["dist"], colorkey = list( right = list( # see ?levelplot in package trellis, argument colorkey: fun = draw.colorkey, args = list( key = list( at = seq(0, 1, .1), # colour breaks col = bpy.colors(11), # colours labels = list( at = c(0, .2, .4, .6, .8, 1), labels = c("0x", "20x", "40x", "60x", "80x", "100x") ) ) ) ) )) l6 = list(meuse.grid["dist"], col = grey(seq(.5,.9,length.out=10))) spplot(meuse, c("zinc", "lead"), sp.layout = l6) spplot(meuse, c("zinc", "lead"), sp.layout = list(meuse.grid, meuse.riv, col = 'grey')) # Custom legend placement, taken from # http://stackoverflow.com/questions/29344692/custom-placement-of-spplot-legend-in-the-map s <- spplot(meuse.grid[,'dist'], colorkey = list(space = "left", height = 0.4)) args <- s$legend$left$args$key ## Prepare list of arguments needed by `legend=` argument (as described in ?xyplot) library(lattice) # draw.colorkey legendArgs <- list(fun = draw.colorkey, args = list(key = args), corner = c(0.05,.75)) ## Call spplot() again, this time passing in to legend the arguments ## needed to print a color key spplot(meuse.grid[,'dist'], colorkey = FALSE, legend = list(inside = legendArgs))
sample point locations within a square area, a grid, a polygon, or on a spatial line, using regular or random sampling methods; the methods used assume that the geometry used is not spherical, so objects should be in planar coordinates
spsample(x, n, type, ...) makegrid(x, n = 10000, nsig = 2, cellsize, offset = rep(0.5, nrow(bb)), pretty = TRUE)
spsample(x, n, type, ...) makegrid(x, n = 10000, nsig = 2, cellsize, offset = rep(0.5, nrow(bb)), pretty = TRUE)
x |
Spatial object; |
... |
optional arguments, passed to the appropriate |
n |
(approximate) sample size |
type |
character; |
bb |
bounding box of the sampled domain; setting this to a smaller value leads to sub-region sampling |
offset |
for square cell-based sampling types (regular, stratified,
nonaligned, hexagonal): the offset (position) of the regular
grid; the default for |
cellsize |
if missing, a cell size is derived from the sample size
|
nsig |
for "pretty" cell size; |
pretty |
logical; if |
an object of class SpatialPoints-class. The number of
points is only guaranteed to equal n
when sampling is done in a
square box, i.e. (sample.Spatial
). Otherwise, the obtained number
of points will have expected value n
.
When x
is of a class deriving from Spatial-class for which
no spsample-methods exists, sampling is done in the bounding box
of the object, using spsample.Spatial
. An overlay using
over may be necessary to select the features inside the geometry
afterwards.
Sampling type "nonaligned"
is not implemented for line objects.
Some methods may return NULL if no points could be successfully placed.
makegrid
makes a regular grid that covers x
; when
cellsize
is not given it derives one from the number of grid
points requested (approximating the number of cells). It tries to
choose pretty cell size and grid coordinates.
sample in the bbox of x
sample on a line
sample in a Polygon
sample in a Polygons object, consisting of possibly
multiple Polygon objects (holes must be correctly defined, use checkPolygonsHoles
if need be)
sample in an SpatialPolygons object; sampling
takes place over all Polygons objects present, use subsetting to vary
sampling intensity (density); holes must be correctly defined, use checkPolygonsHoles
if need be
sample in an SpatialGrid object
sample in an SpatialPixels object
If an Polygon-class object has zero area (i.e. is a line), samples on this line element are returned. If the area is very close to zero, the algorithm taken here (generating points in a square area, selecting those inside the polygon) may be very resource intensive. When numbers of points per polygon are small and type="random", the number searched for is inflated to ensure hits, and the points returned sampled among these.
The following two arguments can be further specified:
nclusters
Number of clusters (strata) to sample from.
iter
(default = 4) number of times to try to place sample points
in a polygon before giving up and returning NULL - this may occur when
trying to hit a small and awkwardly shaped polygon in a large bounding
box with a small number of points
Edzer Pebesma, [email protected]
Chapter 3 in B.D. Ripley, 1981. Spatial Statistics, Wiley
Fibonacci sampling: Alvaro Gonzalez, 2010. Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices. Mathematical Geosciences 42(1), p. 49-64
over, point.in.polygon, sample
data(meuse.riv) meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)), "x"))) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "regular"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "random"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "stratified"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "nonaligned"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr@polygons[[1]], n = 100, "stratified"), pch = 3, cex=.5) data(meuse.grid) gridded(meuse.grid) = ~x+y image(meuse.grid) points(spsample(meuse.grid,n=1000,type="random"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="stratified"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="regular"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="nonaligned"), pch=3, cex=.5) fullgrid(meuse.grid) = TRUE image(meuse.grid) points(spsample(meuse.grid,n=1000,type="stratified"), pch=3,cex=.5)
data(meuse.riv) meuse.sr = SpatialPolygons(list(Polygons(list(Polygon(meuse.riv)), "x"))) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "regular"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "random"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "stratified"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr, n = 1000, "nonaligned"), pch = 3) plot(meuse.sr) points(spsample(meuse.sr@polygons[[1]], n = 100, "stratified"), pch = 3, cex=.5) data(meuse.grid) gridded(meuse.grid) = ~x+y image(meuse.grid) points(spsample(meuse.grid,n=1000,type="random"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="stratified"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="regular"), pch=3, cex=.5) image(meuse.grid) points(spsample(meuse.grid,n=1000,type="nonaligned"), pch=3, cex=.5) fullgrid(meuse.grid) = TRUE image(meuse.grid) points(spsample(meuse.grid,n=1000,type="stratified"), pch=3,cex=.5)
spTransform for map projection and datum transformation
spTransform(x, CRSobj, ...)
spTransform(x, CRSobj, ...)
x |
object to be transformed |
CRSobj |
object of class CRS, or of class |
... |
further arguments (ignored) |
object with coordinates transformed to the new coordinate reference system.
Package sf
provides the methods doing actual transformation.
rearrange SpatialPointsDataFrame for plotting with spplot or levelplot
spmap.to.lev(data, zcol = 1:n, n = 2, names.attr) ## S3 method for class 'SpatialPointsDataFrame' stack(x, select, ...) ## S3 method for class 'SpatialGridDataFrame' stack(x, select, ...)
spmap.to.lev(data, zcol = 1:n, n = 2, names.attr) ## S3 method for class 'SpatialPointsDataFrame' stack(x, select, ...) ## S3 method for class 'SpatialGridDataFrame' stack(x, select, ...)
data |
object of class (or extending) SpatialPointsDataFrame or SpatialGridDataFrame |
zcol |
z-coordinate column name(s), or a column number (range) (after removing the spatial coordinate columns: 1 refers to the first non-coordinate column, etc. ) |
names.attr |
names of the set of z-columns (these names
will appear in the plot); if omitted, column names of |
n |
number of columns to be stacked |
x |
same as |
select |
same as |
... |
ignored |
spmap.to.lev
returns a data frame with the following elements:
x |
x-coordinate for each row |
y |
y-coordinate for each row |
z |
column vector with each of the elements in columns |
name |
factor; name of each of the stacked |
stack
is an S3 method: it return a data.frame with a column
values
that has the stacked coordinates and attributes, and a
column ind
that indicates the variable stacked; it also
replicates the coordinates.
library(lattice) data(meuse.grid) # data frame coordinates(meuse.grid) = c("x", "y") # promotes to SpatialPointsDataFrame meuse.grid[["idist"]] = 1 - meuse.grid[["dist"]] # add variable # the following is made much easier by spplot: levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist","idist"), names.attr = c("distance", "inverse of distance")), aspect = "iso") levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)),aspect = "iso") gridded(meuse.grid) = TRUE levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist","idist"), names.attr = c("distance", "inverse of distance")), aspect = "iso") levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)), asp = "iso")
library(lattice) data(meuse.grid) # data frame coordinates(meuse.grid) = c("x", "y") # promotes to SpatialPointsDataFrame meuse.grid[["idist"]] = 1 - meuse.grid[["dist"]] # add variable # the following is made much easier by spplot: levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist","idist"), names.attr = c("distance", "inverse of distance")), aspect = "iso") levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)),aspect = "iso") gridded(meuse.grid) = TRUE levelplot(z~x+y|name, spmap.to.lev(meuse.grid, z=c("dist","idist"), names.attr = c("distance", "inverse of distance")), aspect = "iso") levelplot(values~x+y|ind, as.data.frame(stack(meuse.grid)), asp = "iso")
It is often said that if Wales was flattened out it would have an area bigger than England. This function computes the surface area of a grid of heights taking into account the sloping nature of the surface.
surfaceArea(m, ...) surfaceArea.matrix(m, cellx = 1, celly = 1, byCell = FALSE)
surfaceArea(m, ...) surfaceArea.matrix(m, cellx = 1, celly = 1, byCell = FALSE)
m |
a matrix of height values, or an object of class SpatialPixelsDataFrame or SpatialGridDataFrame. |
cellx |
the size of the grid cells in the x-direction, in the same units as the height values. |
celly |
the size of the grid cells in the y-direction, in the same units as the height values. |
byCell |
return single value or matrix of values |
... |
ignored |
Either a single value of the total area if byCell=FALSE, or a matrix the same shape as m of individual cell surface areas if byCell=TRUE. In this case, the sum of the returned matrix should be the same value as that which is returned if byCell=FALSE.
Missing values (NA) in the input matrix are allowed. They will produce an NA in the output matrix for byCell=TRUE, and contribute zero to the total area. They also have an effect on adjacent cells - see code comments for details.
takes a matrix as input, requires cellx and celly to be set
takes an object of class SpatialGridDataFrame as input, and retrieves cellx and celly from this
takes an object of class SpatialPixelsDataFrame as input, and retrieves cellx and celly from this
Barry Rowlingson <[email protected]>, integration in sp Edzer Pebesma.
Calculating Landscape Surface Area from Digital Elevation Models, Jeff S. Jenness Wildlife Society Bulletin, Vol. 32, No. 3 (Autumn, 2004), pp. 829-839
surfaceArea(volcano) image(surfaceArea(volcano,byCell=TRUE)) data(meuse.grid) gridded(meuse.grid) = ~x+y image(surfaceArea(meuse.grid["dist"], byCell=TRUE)) surfaceArea(meuse.grid["dist"])
surfaceArea(volcano) image(surfaceArea(volcano,byCell=TRUE)) data(meuse.grid) gridded(meuse.grid) = ~x+y image(surfaceArea(meuse.grid["dist"], byCell=TRUE)) surfaceArea(meuse.grid["dist"])
find point pairs with equal spatial coordinates
zerodist(obj, zero = 0.0, unique.ID = FALSE, memcmp = TRUE) zerodist2(obj1, obj2, zero = 0.0, memcmp = TRUE) remove.duplicates(obj, zero = 0.0, remove.second = TRUE, memcmp = TRUE)
zerodist(obj, zero = 0.0, unique.ID = FALSE, memcmp = TRUE) zerodist2(obj1, obj2, zero = 0.0, memcmp = TRUE) remove.duplicates(obj, zero = 0.0, remove.second = TRUE, memcmp = TRUE)
obj |
object of, or extending, class SpatialPoints |
obj1 |
object of, or extending, class SpatialPoints |
obj2 |
object of, or extending, class SpatialPoints |
zero |
distance values less than or equal to this threshold value are considered to have zero distance (default 0.0); units are those of the coordinates for projected data or unknown projection, or km if coordinates are defined to be longitude/latitude |
unique.ID |
logical; if TRUE, return an ID (integer) for each point that is different only when two points do not share the same location |
memcmp |
use |
remove.second |
logical; if TRUE, the second of each pair of duplicate points is removed, if FALSE remove the first |
zerodist
and zerodist2
return a two-column matrix
with in each row pairs of row numbers with identical coordinates;
a matrix with zero rows is returned if no such pairs are found. For
zerodist
, row number pairs refer to row pairs in obj
. For
zerodist2
, row number pairs refer to rows in obj
and
obj2
, respectively. remove.duplicates
removes duplicate
observations if present, and else returns obj
.
When using kriging, duplicate observations sharing identical spatial locations result in singular covariance matrices. This function may help identify and remove spatial duplices. The full matrix with all pair-wise distances is not stored; the double loop is done at the C level.
When unique.ID=TRUE
is used, an integer index is returned. sp
1.0-14 returned the highest index, sp 1.0-15 and later return the
lowest index.
When zero
is 0.0 and memcmp
is not FALSE
,
zerodist
uses memcmp
to evaluate exact equality of
coordinates; there may be cases where this results in a different
evaluation compared to doing the double arithmetic of computing
distances.
data(meuse) summary(meuse) # pick 10 rows n <- 10 ran10 <- sample(nrow(meuse), size = n, replace = TRUE) meusedup <- rbind(meuse, meuse[ran10, ]) coordinates(meusedup) <- c("x", "y") zd <- zerodist(meusedup) sum(abs(zd[1:n,1] - sort(ran10))) # 0! # remove the duplicate rows: meusedup2 <- meusedup[-zd[,2], ] summary(meusedup2) meusedup3 <- subset(meusedup, !(1:nrow(meusedup) %in% zd[,2])) summary(meusedup3) coordinates(meuse) <- c("x", "y") zerodist2(meuse, meuse[c(10:33,1,10),])
data(meuse) summary(meuse) # pick 10 rows n <- 10 ran10 <- sample(nrow(meuse), size = n, replace = TRUE) meusedup <- rbind(meuse, meuse[ran10, ]) coordinates(meusedup) <- c("x", "y") zd <- zerodist(meusedup) sum(abs(zd[1:n,1] - sort(ran10))) # 0! # remove the duplicate rows: meusedup2 <- meusedup[-zd[,2], ] summary(meusedup2) meusedup3 <- subset(meusedup, !(1:nrow(meusedup) %in% zd[,2])) summary(meusedup3) coordinates(meuse) <- c("x", "y") zerodist2(meuse, meuse[c(10:33,1,10),])